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Abstract—Ubiquitous smartphones are increasingly becoming the dominant platform for collaborative sensing. Smartphones, with
their ever richer set of sensors, are being used to enable collaborative driver-assistance services like traffic advisory and road condition
monitoring. To enable such services, the smartphones’ GPS, accelerometer and gyro sensors have been widely used. On the contrary,
smartphone cameras, despite being very powerful sensors, have largely been neglected. In this paper, we introduce a collaborative
sensing platform that exploits the cameras of windshield-mounted smartphones.
To demonstrate the potential of this platform, we propose several services that it can support, and prototype SignalGuru, a novel service
that leverages windshield-mounted smartphones and their cameras to collaboratively detect and predict the schedule of traffic signals,
enabling Green Light Optimal Speed Advisory (GLOSA) and other novel applications. Results from two deployments of SignalGuru,
using iPhones in cars in Cambridge (MA, USA) and Singapore, show that traffic signal schedules can be predicted accurately. On
average, SignalGuru comes within 0.66s, for pre-timed traffic signals and within 2.45s, for traffic-adaptive traffic signals. Feeding
SignalGuru’s predicted traffic schedule to our GLOSA application, our vehicle fuel consumption measurements show savings of 20.3%,
on average.

Index Terms—smartphone, camera, Intelligent Transportation Systems, services, traffic signal, detection, filtering, prediction, collabo-
ration
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1 INTRODUCTION

With an ever richer set of sensors, increased computational

power and higher popularity, smartphones have become a ma-

jor collaborative sensing platform. In particular, smartphones

have been widely used to sense their environment and provide

services to assist drivers. Several systems have been proposed

that leverage smartphone GPS, accelerometer and gyroscope

sensors to estimate traffic conditions [11], [21], detect road

abnormalities [21] and compute fuel-efficient routes [8].

Cameras, in contrast to other smartphone sensors, have so

far been underutilized for automated collaborative sensing.

Cameras have been used only for a handful of participatory

sensing systems; both image capture and image analysis are

performed by a human user. Such applications include the

monitoring of vegetation, garbage, and campus assets [24]. In

all these services, users must point their smartphone camera to

the target object, capture an image and upload it to the central

service where a human operator will analyze it. The adoption

of collaborative sensing services that leverage smartphone

cameras without manual user and operator effort has so far

been hindered because of two false beliefs: 1) the view of

smartphone cameras is always obstructed (e.g., carried in

pockets or placed flat on the table), and 2) image processing

requirements are prohibitively high for resource-constrained

mobile devices.
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In this paper, we propose a novel collaborative sens-

ing platform that is based on the cameras of windshield-

mounted smartphones. We show that accurate and near-real-

time camera-based sensing is possible. Many drivers are

already placing their phones on the windshield in order to

use existing popular services like navigation. Once a phone

is placed on the windshield, its camera faces the road ahead.

Our proposed sensing platform leverages these cameras to op-

portunistically capture content-rich images of the road and the

environment ahead. Inter-device collaboration is also leveraged

to gather more visual road-resident information and distill it

into knowledge (services) that can be provided to the drivers.

With their cameras, a network of collaborating windshield-

mounted smartphones can enable a rich set of novel services.
In this paper, we focus on the description and evaluation of

the SignalGuru service [17]. SignalGuru leverages the cameras

of windshield-mounted smartphones in order to detect traffic

signals ahead and predict their future schedule. SignalGuru

devices collaborate with other regional devices in order to

mutually improve their historic traffic signal status information

and better predict when the signal ahead will turn green/red.
Providing real-time services, like SignalGuru, on top of a

confederation of windshield-mounted smartphones and their

cameras poses several challenges that need to be overcome:

1) Commodity cameras: The quality of smartphone cameras

is significantly lower than that of high-end special-

ized cameras used in computer vision and autonomous

navigation. Smartphone cameras have both lower color

quality and lower resolution. Further, as capturing still

images is very slow (1-2 seconds on an iPhone 3GS

device), video frames should often be used instead for

low-overhead and high-frequency image-based detec-

tion. This further degrades resolution, as video resolution
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is only up to 640x480 pixels for iPhone 3GS and

1280x720 pixels for iPhone 4 devices.

2) Limited processing power: Processing video frames to

detect visual information takes significant computational

resources. In SignalGuru, traffic signal detection is the

most compute-intensive task. A traffic signal detection

algorithm that runs on resource-constrained smartphones

must be lightweight so that video frames can still be

processed at high frequencies. The higher the processing

frequency, the more accurately SignalGuru can measure

the duration of traffic signal phases and the time of their

status transitions.

3) Uncontrolled environment composition and false detec-
tions: Windshield-mounted smartphones capture the real

world while moving. As a result, there is no control over

the composition of the content captured by their video

cameras. Results from one of our deployments suggest

that the camera-based traffic signal detection algorithm

can confuse various objects for traffic signals and falsely

detect traffic signal colors. A misdetection rate of 4.5%

can corrupt up to 100% of traffic signal predictions.

Schemes need to be devised to carefully filter noisy

image-based object detections.

4) Variable ambient light conditions: Still image and video

capture are significantly affected by the amount of

ambient light that depends on both the time of the day

and the prevailing weather conditions. By adjusting the

camera exposure time to the fixed luminous intensity of

traffic signals, SignalGuru robustly detects traffic signals

regardless of the prevailing ambient light conditions.

5) Need for collaboration: The visual information that an

individual smartphone senses is limited to its camera’s

view angle. Regional smartphones thus need to collab-

orate in order to increase their information reach. In

the SignalGuru service, for example, a device may not

be able to see a far-away traffic signal, or may not be

within view of the traffic signal for a long enough stretch

of time. Collaboration is needed between vehicles in

the vicinity (even those on intersecting roads) so that

devices have enough information to be able to predict the

schedule of traffic signals. Collaboration is also needed

in order to maintain SignalGuru’s data over time and in

a distributed fashion within the vehicular network.

Alternatively, collaborative services like SignalGuru

could be implemented on an Internet server, relying

on always-available long-range cellular communication

to the server. However, in this paper we focus on a

completely infrastructure-less solution that relies solely

upon opportunistic short range communication (ad-hoc

802.11g) among the windshield-mounted devices. Such

a grassroots service architecture may have a more com-

plex design, but avoids the cost of internet servers and

the costly, high-latency, low-bandwidth and potentially

overloaded long range cellular connections [15], [16].

It should be noted that we do not consider battery lifetime

as a major challenge. Mobile phones can be plugged into the

ample energy resources of a vehicle. In cases where this does

not hold, approaches proposed for lifetime maximization in

sensor networks [13], [32] can be used. Such approaches can

determine if and when a given device needs to perform certain

power hungry-tasks (e.g., SignalGuru traffic signal detection,

collaboration with wireless communication).

The contributions of this work are the following:

1) We show that, with their cameras, collaborating

windshield-mounted smartphones create a powerful

sensing platform enabling a rich set of novel services.

We discuss five such services and prototype SignalGuru

demonstrating the ability of windshield-mounted smart-

phones to effectively detect and predict the schedule of

traffic signals. Not only pre-timed but also state-of-the-

art traffic-adaptive traffic signals can be predicted with

very good accuracy (2.45s) by using customized Support

Vector Regression (SVR) models.

2) Networks of windshield-mounted smartphones can

greatly increase their camera-based sensing frequency

and accuracy by fusing information from the smart-

phone’s Inertial Measurement Unit (IMU) to reduce

the video area that needs processing. Our IMU-based

detection window, halves both the processing time and

the misdetection rate for SignalGuru. We also propose

and evaluate low-pass filtering and a colocation filter that

effectively filter away false positive event (e.g., traffic

signal transition) detections.

3) Many user-focused applications can be built on top of

the traffic signal prediction system aka SignalGuru. In

particular, our GLOSA system offers speed advisories

to avoid undue stops and waits at red lights. Testing

this system using an onboard fuel efficiency monitor,

we show that when drivers follow the advisory of our

SignalGuru-based GLOSA system, 20.3% fuel savings

can be achieved.

In the next sections, we describe SignalGuru in detail.

In Section 2, we present the motivation behind SignalGuru

and in Section 3 the SignalGuru-enabled GLOSA application.

Section 4 describes the operation of traffic signals and Section

5 the architecture of our collaborative SignalGuru service.

In Section 6, we present our experimental methodology and

in Section 7, we evaluate the performance of SignalGuru’s

individual modules based on our two real-world deployments.

Section 8 discusses the operation of SignalGuru in complex

intersections. In Section 9, we describe four more services that

windshield-mounted smartphones could support and discuss

their challenges as compared to SignalGuru. Finally, Section

10 surveys related work and Section 11 offers our conclusions.

2 SIGNALGURU MOTIVATION

There are more than 272,000 traffic signals in major in-

tersections of the USA alone [14], and our daily driving

experience is significantly influenced by them. Traffic signals

are widespread in developed countries as they allow competing

flows of traffic to safely cross busy intersections. Traffic

signals, however, do take their toll. The stop-and-go movement

pattern that they impose, increases fuel consumption by 17%
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[2], CO2 emissions by 15% [2], causes congestion [3], and

leads to increased driver frustration [14].

Drivers can be assisted with a Green Light Optimal Speed

Advisory (GLOSA) system [2], [30]. A GLOSA system ad-

vises drivers on the optimal speed they should maintain when

heading towards a signalized intersection. If drivers maintain

this speed, the traffic signal will be green when they reach the

intersection, allowing the driver to cruise through. In this way,

the stop-and-go movement pattern can be alleviated.

Worldwide, only a handful of GLOSA systems have been

deployed [30], and they have so far been based on roadside

message signs (wired to traffic signals). These signs are placed

a couple hundred meters away from the signal and display

the optimal speed drivers should maintain. Their costly and

often impractical deployment and maintenance, however, has

hindered their widespread usage.

Countdown timers at vehicular traffic signals constitute

another alternative approach to assist drivers; digital timers

next to the traffic signal display the time till the signal changes

from red to green and vice versa. Such traffic signals are

deployed only in a few cities around the world. The cost

of updating existing traffic signals to include such timers has

hindered their widespread deployment.

Countdown timers for pedestrian traffic signals are much

more common in the USA and the rest of the world, and

drivers can sometimes use these to infer when the light will

turn green. However, these are very often not visible from

far away but only after one has reached the intersection. At

that time, it is too late for drivers to adapt speed and so they

need to come to a complete halt anyway. Furthermore, at some

intersections, it is not easy or even possible for the driver to

infer the time the signal will switch; the intersection may have

a complex phase schedule and the green light for the driver

may not come immediately after some pedestrian timer counts

down to zero.

US and European transportation agencies recognize the

importance of GLOSA and access to traffic signal sched-

ules, and thus have advocated for the integration of short-

range (DSRC) antennas into traffic signals as part of their

long-term vision. DSRC-enabled traffic signals will be able

to broadcast in a timely fashion their schedule to DSRC-

enabled vehicles that are in range. Audi recently prototyped

a small-scale DSRC-based GLOSA system for 25 traffic

signals in Ingolstadt (Germany) [2]. Once again, however, the

widespread deployment of such an approach has been hindered

by the significant cost to equip traffic signals and vehicles

with the necessary specialized computational and wireless

communications infrastructure.

In this paper, we take an infrastructure-less approach to

accessing traffic signal schedules by leveraging the proposed

collaborative platform of windshield-mounted smartphones

and their cameras. Windshield-mounted smartphones use their

cameras to detect and determine the current status of traffic

signals. Multiple phones in the vicinity use opportunistic ad-

hoc communications to collaboratively learn the timing pat-

terns of traffic signals and predict their schedule. SignalGuru’s

predicted traffic signal schedule then enables GLOSA and

other possible applications on the phone.

3 SIGNALGURU APPLICATIONS: GLOSA
The goal of the GLOSA application is to advise drivers on

the optimal speed they should maintain so that the signal is

green when they arrive at the next intersection. In this way the

driver can cruise through the intersection without stopping.

A GLOSA application can offer several benefits such as 1)

decreased fuel consumption, 2) smoothed and increased traffic

flow (stop-and-go patterns avoided), and as a result of these,

3) decreased environmental impact.
A GLOSA application needs four pieces of information

in order to be able to calculate the optimal speed: 1) the

residual amount of time till the traffic signal ahead turns

green, 2) the intersection’s (stop line) location, 3) the vehicle’s

current location, and 4) the queue length of the traffic signal

ahead. The first is provided by SignalGuru, the second by map

information [23] and the third by the available localization

mechanisms on the mobile device (e.g., GPS). The traffic

signal queue length and the time it will take to discharge

can be estimated by fusing information about the number and

positions of vehicles in the queue as described in [6], [14].
If no traffic signal queue length information is available,

and when vehicles are very close (<100m) to the intersection,

GLOSA should switch from a speed advisory to a time

countdown. Drivers can then look at the queue length ahead

and manually estimate their optimal speed.
Although GLOSA may often advise a vehicle to reduce its

speed, the vehicle’s total travel time will not be increased. On

the contrary, GLOSA helps decrease average travel time by

1%-18% [1]. Despite the speed reduction, a GLOSA-enabled

vehicle will still travel through the intersection at the same

traffic signal phase as it would if it were traveling at its regular

speed. Moreover, at the time the signal turns green, a GLOSA-

enabled vehicle will be cruising through the intersection with

an initial non-zero speed, as opposed to a regular vehicle that

would have to start from a complete halt.
GLOSA also improves the overall flow reducing congestion.

The traffic flow is smoother and faster when vehicles are

cruising through the intersections as opposed to when they

come to a complete halt and then slowly accelerate one after

the other to cross the intersection. Traffic flow improvements

then lead to further gas and travel time savings.
The larger the available lead-up time i.e., the amount of time

in advance that predictions are available, the more effective

GLOSA is. Predictions that are available at least 20 sec in

advance, while the driver is perhaps 250m from the traffic

light, provide enough room to control the vehicles’ speed.

The prediction accuracy should be less than 10% of the traffic

signal’s phase length to avoid wasting precious green time

(i.e., to avoid vehicles arriving at the intersection long after

the light has switched to green).
Besides GLOSA, SignalGuru’s traffic signal schedule pre-

dictions can be used to enable more applications like a Traffic

Signal-Adaptive Navigation (TSAN) service and a Red Light

Duration Advisory (RLDA) service [17]. A TSAN service

will optimize the suggested route by also taking traffic signal

schedules into account. An RLDA service would advise the

drivers when switching off their engine would save them gas

while waiting at a red light.
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4 TRAFFIC SIGNAL BACKGROUND

In signalized intersections, different but non-conflicting (safe

to co-exist) vehicular and pedestrian movements are grouped

together to run at the same time. Such groups of movements

are termed phases. A simple intersection typically has two

phases. When the light is green for phase A, vehicles or

pedestrians moving North-South can safely move at the same

time. Later the traffic signal will turn red for phase A and green

for phase B. At this time, vehicles and pedestrians moving

East-West can go. When this phase completes, the intersection

has completed one cycle and the light will turn red again for

phase B and green for phase A. Many intersections may have

more than two phases. The amount of time that the light stays

green in a given phase is phase length. The sum of all phase

lengths of an intersection is cycle length.

Most traffic signals in the US are pre-timed traffic signals

[25]. For pre-timed traffic signals the settings (phase lengths,

cycle length) of the traffic signals are fixed and the exact same

schedule repeats in every cycle. The settings only change when

the intersection switches mode of operation depending on the

day or the time of day. Typically pre-timed traffic signals have

three modes of operation: 1) off-peak, 2) a.m. peak and 3) p.m.

peak. Sometimes, there is a special schedule for Saturday peak.

In contrast to the US, Singapore adaptively controls its

traffic signals using the state-of-the-art GLIDE system that

is adapted from the SCATS system [27]. SCATS adaptively

adjusts settings of the traffic signals based on measurements

from its inductive loop detectors. One loop detector is installed

per lane and placed beneath the road surface at the intersection

stop line. Loop detectors, while the light is green, measure the

saturation of their lane. Specifically, lane saturation is calcu-

lated as a function of the number of vehicles that traveled over

the corresponding loop detector and the measured total gap

time (i.e., amount of time that the loop detector is unoccupied).

Lane saturations are merged to calculate a phase’s saturation.

SCATS adjusts traffic signal settings in order to balance the

saturation across the different phases of the intersection. The

higher the saturation of a phase (more vehicles), the greater

portion of the cycle length is allocated to the specific phase.

Cycle length duration is adjusted depending on the saturation

of all the phases of the intersection and increases when the

maximum phase saturation increases. Longer cycles allow in-

tersections to operate more efficiently (higher throughput), but

increase the waiting times and frustration of drivers. SCATS

measures phase saturations and changes the intersection traffic

signal settings accordingly every cycle, i.e., every 1-3 minutes.

5 SIGNALGURU ARCHITECTURE

SignalGuru aims to detect and predict the schedule of traffic

signals using just software on commodity smartphones. It

is a grassroots software service that leverages opportunistic

sensing on mobile phones to detect the current color of traffic

signals, share with nearby mobile phones to collectively derive

traffic signal history, and predict the future status and timing

of traffic signals.

Figure 1 shows the modules in the SignalGuru service. First,

phone cameras are used to capture video frames, and detect

optimal 
speed

video frame

predicted 
schedule
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timestamped 
R G transitions
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R G transitions
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Collaboration 
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Module

Fig. 1: SignalGuru service architecture.

the color of the traffic signal (detection module). Then, infor-

mation from multiple frames is used to filter away erroneous

traffic signal transitions (transition filtering module). Third,

nodes running the SignalGuru service broadcast and merge

their traffic signal transitions with others in communications

range (collaboration module). Finally, the merged transitions

database is used to predict the future schedule of the traffic

signals ahead (prediction module).

The prediction of the future schedule of traffic signals is

based on information about past timestamped R→G (red to

green) transitions. The prediction is based on R→G transitions,

as opposed to G→Y (green to yellow) transitions, because

vehicle-mounted smartphones can witness and detect R→G

transitions much more frequently; when the traffic signal is

red, vehicles have to stop and wait till the signal turns green.

As a result, it is quite likely that a vehicle will be at the

intersection at the moment that the R→G transition occurs and

thus detect it. For a G→Y transition to be detected, the vehicle

needs to be driving towards the intersection and have good

view (≤ 50 meters away) of the signal when the signal color

changes. As a result, it is much less likely1 for a vehicle to be

close enough to the intersection at the moment of the G→Y

transition. The same applies also for Y→R transitions. Section

5.4 discusses how timestamped R→G transition information

is used to predict the traffic signal schedule.

1. In our Singapore deployment (Section 6.2), vehicles witnessed a total of
37 R→G transitions but only two G→Y transitions.
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Color filtering

video frame
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filtering module
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Fig. 2: Traffic signal detection algorithm. "NS" stands for
"No Signal" and is the status returned by the detection
module when no traffic signal can be detected with a
confidence higher than the threshold value.

5.1 Detection Module
The detection module detects and reports the current color

of potential traffic signals in the captured video frames. The

detection module is activated based on its GPS location2 and

only when it is close (<50m) to a signalized intersection. The

video frames are captured using the standard iPhone camera.

As Figure 3 shows, when the smartphone is mounted on the

windshield, this camera is facing outside and thus able to

capture videos of the traffic signals ahead. This is just as users

would mount their smartphone when using a navigation or

other travel-related application.

5.1.1 Detection Algorithm
SignalGuru’s traffic signal detection module must be

lightweight and fast so that the color of traffic signals can be

sensed as frequently as possible, and the time of transitions

is detected as precisely as possible. The time accuracy of

color transition detections directly affects the time accuracy of

predictions, as Section 5.4 explains. Our SignalGuru detection

module is able to process a fresh frame every two seconds.

Figure 2 shows our image processing algorithm used to pro-

cess video frames for the purpose of detecting traffic signals.

The algorithm is based on the three most characteristic features

of a traffic signal, which are the bright red/yellow/green color

of its bulbs, the shape of its bulbs (e.g., circle, arrow) and its

surrounding black box (traffic signal housing).

2. We configure the iPhone’s GPS to return location stamps of the maximum
possible accuracy and frequency.

The first step of the detection algorithm is the color filtering

process, as the most distinctive feature of traffic signals is

the bright color of their bulbs. The color filter inspects the

color of all pixels of an image (video frame) and zeroes out

the pixels that could not belong to a red, yellow or green

traffic signal bulb. Thus the color-filtered image contains only

objects that have the correct color to be a traffic signal bulb.

The color filter was designed empirically by analyzing the

color range of red, yellow, green bulb pixels from a set of 400

traffic signal pictures3. This filter is fairly computationally-

lightweight when performed in the device’s native colorspace

(i.e., RGB). It also manages to zero out most of an image,

reducing computing needs in subsequent stages. For all these

reasons, the color filtering stage comes first.

After color filtering, only objects that have the correct color

are maintained in the image. The next stages examine which of

them qualify to be a traffic signal based on their shape (e.g.,
circle, arrow). This is achieved by first applying a Laplace

edge detection filter that highlights the boundaries of the

color filtered objects and then a Hough transform. The Hough

transform uses a voting mechanism (accumulator) to decide

which objects constitute the best traffic signal bulb candidates

based on their shape.

Once the Hough transform voting is completed, the accu-

mulator determines which object has the most votes and is

thus the best candidate to be a traffic signal. The accumulator

contains information about the location of the best candidate

in the image as well as its size (e.g., radius).

Then, the pixels of the candidate area are inspected to decide

on the color of the bulb and count exactly what percentage of

the pixels falls into the correct color range. This percentage

is termed the Bulb Color Confidence (BCC). BCC helps to

avoid confusing, for example, road signs with a circular red

perimeter but a different color in the center (e.g., right turn

prohibited sign) as a red signal.

According to the color and size of the bulb, a specific area

around the bulb is checked for the existence of a horizontal

or vertical black box, the traffic signal housing. For example

if the bulb is red, the area below or on the left is searched for

a vertical or horizontal traffic signal black box, respectively.

A Black Box Confidence (BBC) metric is also reported based

on how many pixels of the searched area are dark enough to

qualify as traffic signal black box pixels.

The product BCC×BBC constitutes the detection confidence
for a specific object in the video frame. If the detection

confidence is higher than a threshold value, then the detection

is considered valid and the a traffic signal with the detected

color is reported. If not, the next best candidate from the

Hough transform accumulator is examined. We found that a

detection confidence threshold of 0.6 yielded the lowest de-

tection false positive and false negative rates for our database

(400 pictures). We also found that there is little additional

value in inspecting more than the 10 best candidates of the

Hough voting mechanism. As a result, the looping criterion in

Figure 2, N, is set to 10 for our work.

3. We used a different color filter for Cambridge and Singapore as the two
cities use traffic signals implemented with different technologies.
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5.1.2 IMU-based Detection Window
For visibility and other practical reasons, traffic signals are

placed high above the ground. As a result, traffic signals often

appear only in the upper part of a captured video frame. As

shown in Figure 4, the lower half of the image captures the

road and other low-lying objects, whereas the traffic signals

are located in the upper half. The part of the image where

the traffic signal can be located depends not only on the

orientation of the windshield-mounted smartphone, but also

on the distance from the traffic signal; the closer the phone to

the traffic signal, the higher the signal appears in the image.

SignalGuru leverages information from the smartphones’

inertial sensors to narrow its detection window, i.e., the part of

the image where traffic signals are expected to appear. More

specifically, SignalGuru uses information from the accelerom-

eter and gyro-based Inertial Measurement Unit (IMU) of the

smartphone to infer its orientation (roll angle) and information

from its GPS device to calculate distance from the signal.

With this information, the size of the detection window can

be easily calculated analytically. The calculation is left out

in the interest of space. The IMU-based detection window is

shown with a red bounding box in Figure 4.

The IMU-based detection window scheme enables Signal-

Guru to ignore a large portion of a captured frame that can

have nothing but noise, providing twofold benefits. First, the

image processing time is almost halved. Second, the traffic

signal detection is significantly improved. The benefits of this

scheme are evaluated in Section 7.2.

5.1.3 Variable Ambient Light Conditions
Ambient light conditions significantly affect the quality of

captured still images and video frames. The amount of ambient

light depends on both the time of the day and the prevailing

weather conditions (sunny vs. cloudy). Smartphone cameras

automatically and continuously adjust their camera exposure

setting to better capture the target scene. Nevertheless, we

found that traffic signals are often not captured well with their

bulbs appearing either too dark (underexposed) or completely

white (overexposed). As a result, the detection module would

perform very poorly in some cases.

Traffic signals, however, have a fixed4 luminous intensity.

We leverage this by adjusting and locking the camera exposure

time to the fixed intensity of traffic signals. This eliminates the

sensitivity of traffic signal detection to time of day or weather.

The camera exposure time is automatically adjusted by press-

ing the "Adjust Exposure" button and pointing the camera to a

traffic signal. Then by pressing the "Lock Exposure" button the

setting is recorded and locked, obviating the need for further

adjustments.

5.2 Transition filtering module
The raw detection of traffic signals and their color transitions

(R→G) given by the detection module is fairly noisy. In our

Singapore deployment, in 65% of the cases that a vehicle

4. LED traffic signals have fixed luminous intensity. Older incandescent
traffic signals do not, but are quickly becoming obsolete. Both Cambridge
and Singapore use LED traffic signals.

is waiting at a red traffic signal, it reports a false positive

transition i.e., a transition that did not actually occur. Typically,

the image detection module was detecting the actual red light

and then happened to misdetect some arbitrary object for a

green light. Note that vehicles were waiting at the intersection

for 48s, on average, capturing and processing perhaps dozens

of video frames. If not handled properly, a single false green

light detection would be enough to erroneously generate a

transition report. Similarly, if a vehicle happens to misdetect

an arbitrary object for a red light in between detections of the

actual green light, a false transition would be reported.

While ideally we would like to be able to detect and report

all R→G transitions witnessed (no false negatives), it is even

more critical to avoid false positives (reports of transitions that

never happened), because false positives pollute the prediction

scheme. Therefore, we filter R→G transitions using a two-

stage filter: a low-pass filter followed by a colocation filter.

5.2.1 Low Pass Filter (LPF)
According to our findings from our Singapore deployment, in

88% of the cases, false positive detections occur over a single

frame and do not spread over multiple consecutive frames. As

a result, most false transitions have one of the following three

patterns with the false detection marked in bold:

1) R→ ...→R→G→R→...→R

2) G→ ...→G→R→G→...→G

3) NS→...→NS→R→G→NS→...→NS

The first (most common) pattern occurs when the vehicle is

waiting at the red light it correctly detects, then at a specific

instance it misdetects a passing object (e.g., design on a bus

crossing the intersection) for a green traffic light. The second

pattern occurs when the vehicle misdetects an arbitrary object

for a red light in between detections of the actual green light.

Finally, the third pattern occurs when the view of the vehicle

is obstructed and there is no traffic signal in sight. However,

at some point, it misdetects an arbitrary object for a red light

and right after that a different object for a green light. This

pattern is the least common.

The LPF filters out such "spikes" or anomalies across mul-

tiple traffic signal transitions by adding some hysteresis. The

LPF classifies only transitions that have the R→ R→G→G

pattern as valid, i.e., at least two red status reports followed

by at least two green status reports. As our results in Section

7.3 show, the LPF filters the vast majority of false positive

transitions at the cost of creating only a small number of false

negatives (actual transitions removed by the filter).

5.2.2 Colocation Filter
A distinctive feature of traffic signals, as opposed to other

objects with similar colors and shape, is that the red and the

green bulb are contained in the same black box; that is, they

are colocated. SignalGuru’s filtering module leverages this by

checking whether detected red and green bulbs are colocated

before accepting a transition as valid. More specifically the

colocation filter checks whether the green bulb that was just

detected is close to the red bulb detected in the previous frame.

Note that the accumulator of the Hough transform pinpoints

the location of the traffic signal candidates.
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Fig. 3: SignalGuru-enabled iPhone
mounted on the windshield. The OBD-
LINK device used to measure fuel
consumption is also shown.

Fig. 4: SignalGuru service screenshot. GLOSA advisory has also been included
in the same iPhone application. Audio advisory can complement the visual
advisory to alleviate driver distraction.

Given that SignalGuru can capture and process video frames

every 2s, the average delay between the light turning green

and SignalGuru capturing this event in its next video frame

is 1s. In 1s or even 2s that is the maximum possible green

light capture delay, a vehicle will not have accelerated and

moved significantly. Hence, there is no need to compensate

for vehicle movement.

However, as exemplified in Figure 3, many intersections

have two or more traffic signals for the same phase or direction

of traffic. Therefore, the red and green bulbs may be detected

on different traffic signals across the two frames. To tackle

this, before the colocation filter rejects a transition as invalid,

it invokes the detection module to check whether there exists,

in the current frame, a green bulb that is collocated with the red

bulb of the previous frame. In this case, the detection window

covers only a very small area around the red traffic signal of

the previous frame, and thus incurs negligible computational

overhead.

As shown in Section 7.3, the colocation filter effectively fil-

ters out false positive transitions at the cost of a small increase

in false negatives. Together, the LPF and the colocation filter

form a very robust two-stage filter.

5.3 Collaboration module
SignalGuru depends on the grassroots collaboration among the

participating nodes (smartphones). A node is limited by its

field of vision, and does not have all the information it needs

in order to predict the schedule of the traffic signals ahead.

Typically, a node needs information about a traffic signal well

before the signal comes into the node’s camera field of view.

For the prediction of traffic-adaptive traffic signals, col-

laboration is even more critical. As we explain in Section

5.4.2, in order to be able to predict traffic-adaptive traffic

signals, information from all phases (intersecting roads) of an

intersection is needed. Furthermore, Section 7.4.3 shows how

more collaborating nodes and more traffic signal history can

improve the prediction accuracy for the challenging traffic-

adaptive traffic signals of Singapore.

The collaboration module allows participating SignalGuru

nodes to opportunistically exchange their traffic signal infor-

mation (timestamped R→G transitions) by periodically (every

two seconds) broadcasting UDP packets in 802.11 ad-hoc

mode. A SignalGuru node broadcasts not only the data it has

sensed on its own, but also the data it has opportunistically

collected so far. Only data about the traffic signal transitions of

the last five cycles is exchanged. We found that using a longer

history of data does not significantly improve the traffic signal

prediction accuracy.
In order to be able to predict the schedule of the traffic

signals ahead, nodes need either the database of the traffic

signal settings (for pre-timed traffic signals) or the Sup-

port Vector Regression (SVR) prediction models (for traffic-

adaptive signals). This information is passed to a node along

with the sensed transition data before the node approaches the

corresponding traffic signals. However, it is likely that this

node will have also crossed the traffic signal ahead in the

recent past (e.g., yesterday due to daily commute). In this case,

the sizeable (62 KB) SVR prediction models do not need to be

resent as they are relatively static (Section 7.4.3). The settings

for a pre-timed traffic signal can be encoded in just a couple

bytes and thus resending them incurs negligible overhead.
The amount of traffic signal information5 that SignalGuru

nodes gather and exchange can be constrained by tiling a

geographic area into regions and having SignalGuru nodes

maintain and exchange data that belongs only to their current

region. Methods for tiling a region into sub-regions for the

purpose of ensuring data availability and load balancing are

beyond the scope of this paper. Furthermore, the aggregate

regional resources for the operation and maintenance of the

SignalGuru service can be kept at bay by running SignalGuru

atop resource-aware middleware like RegReS [16].

5.4 Prediction module
Two main categories of traffic signals exist: pre-timed and

traffic-adaptive traffic signals. Since their operation is very

different, SignalGuru uses different prediction schemes for

each category.

5. Sensed traffic signal transitions, database of traffic signal settings and
SVR prediction models for pre-timed and traffic-adaptive traffic signals,
respectively.
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Fig. 5: Timeline of traffic signals operation and Signal-
Guru’s detections and predictions for a simple intersection
with two phases (A and B). The letters on the timeline
denote for which of the two phases the light is green.
The timestamps of actual, detected and predicted phase
transitions are also marked with t, t ′ and τ , respectively.
PLA is the actual length of phase A and PL’A its predicted
value. εd and εp are the color transition detection and
prediction errors, respectively.

5.4.1 Pre-timed Traffic Signals
SignalGuru’s prediction module maintains a database of the

traffic signal settings. As described in Section 4, pre-timed

traffic signals have fixed pre-programmed settings for their

different modes (a.m./p.m. peak, off-peak, Saturday peak).

Traffic signal settings can be acquired from city transportation

authorities. In case they are not available, the settings (phase

lengths) can be measured as described in Section 5.4.2. This

means that SignalGuru knows how long each phase lasts.

The challenge remains to accurately synchronize SignalGuru’s

clock with the time of phase transition of a traffic signal. Once

this is achieved, SignalGuru can very easily predict when the

traffic signal will switch again to green, yellow or red.

Clock synchronization is achieved by capturing a color

transition, e.g., R→G. Figure 5 shows a timeline of events. If

the timestamps of the last red and first green color detections

for phase A are t ′A,R and t ′A,G, respectively, then the detected

transition time is t ′A,R→G = (t ′A,R + t ′A,G)/2.

The time the traffic signal will switch to red for phase

A (and green for phase B) can be predicted by adding the

predicted6 length of phase A (PL′
A) to t ′A,R→G as τB,R→G =

t ′A,R→G + PL′
A. Since this intersection has only two phases,

phase A will follow after phase B; as phases are scheduled in

a predictable, round-robin way. By adding (PL′
B) to τB,R→G,

we get the next R→G transition for phase A, and so on.

Clock synchronization needs to be reestablished only after

the traffic signal changes mode of operation or recovers from

an operational failure. As a result, the necessary participation

requirements for the detection of pre-timed traffic signals is

very low. Only a few vehicles are required, as traffic signal

transitions need to be detected only once every a couple

hours or potentially at even lower frequencies. Unless a cloud

server is used, more vehicles may be necessary, however, for

the maintenance of SignalGuru’s data around the area of the

corresponding traffic signals.

5.4.2 Traffic-adaptive Traffic Signals
The Singapore GLIDE (SCATS) system is one of the world’s

most sophisticated and dynamic traffic-adaptive traffic signal

6. For pre-timed traffic signals, the predicted phase length is the value
looked up in the traffic signal settings database.

control systems. As described in Section 4, SCATS measures

the saturation of intersection phases and adjusts their phase

lengths at every cycle. Phase lengths change when SCATS

changes the value of the cycle length or the fraction of the

cycle length that gets allocated to them. SCATS may choose

to change both settings at the same time. Phases are still

scheduled in a deterministic round-robin manner.

SignalGuru predicts future transitions (e.g., when the sig-

nal ahead will turn green) by detecting past transitions and

predicting the length of the current or next phases. The key

difference from the prediction of pre-timed traffic signals lies

in the prediction of the phase length, as opposed to looking it

up from a database.

SignalGuru predicts the length of a phase by measuring and

collaboratively collecting the prior traffic signal transition his-

tory, and feeding it to a Support Vector Regression (SVR) [4]

prediction model. In Section 7.4.3, we evaluate the prediction

performance of different Prediction Schemes (PS) by training

the SVR with different sets of features:

• PS1: The past lengths of the specific phase. For example,

the next length of phase A is predicted based on history

information such as the lengths of the five previous phases

of A. We found that further increasing the length of the

history does not yield any benefits. Similarly, SCATS uses

only loop detector measurements performed over the last

five cycles to determine the next traffic signal settings.

• PS2: Like PS1, but the length of the preceding phases

of the same cycle is also provided. This means that

when trying to predict the length of phase C, the lengths

of preceding phases A and B are also fed to the SVR

model. As our results show, this information significantly

improves the performance of the prediction module. The

reason is that changes to a given cycle’s phase lengths are

correlated; when SCATS changes the cycle length setting,

all phases change in the same way.

• PS3: Like PS2, except that information for the past 5

cycle lengths is also factored in.

• PS4: In addition to PS3’s features, this scheme assumes

the predictor has access to loop detector saturation infor-

mation, which is not currently feasible. Saturation values

over the past 5 cycles are fed to the SVR model. Note

that traffic (vehicle speed) estimation is not a good proxy

for the unavailable loop detector measurements. Average

vehicle speed does not always correlate well with the

saturation measured by SCATS’s loop detectors; a specific

phase, despite the fact that vehicles are moving fast, may

be highly saturated (with dense flow).

In order for SignalGuru to be able to use any of the first

three feasible prediction schemes, the lengths of the past

phases need to be measured. While it is easy for SignalGuru

to detect the R → G transition for the beginning of a phase,

as explained in Section 4, it is very hard to detect the G →Y
transition for the end of the phase. To remedy that, collabo-

ration across nodes waiting at the different traffic signals of

the same intersection is leveraged; the G → Y transition of a

given phase is inferred by the R→G transition of the successor

phase that was detected by nodes waiting at the traffic signal of
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P1

P2

Fig. 6: Route of vehicles in Cambridge deployment. The
targeted intersections are marked with circles. P1 and P2

are the start and end points, respectively, for our GLOSA
experiment trip.

the successor phase. For example, the fact that the light turned

green for phase B at time t means that it turned yellow for

phase A at time t minus the clearance interval. The clearance

interval is a fixed setting and is the amount of time a phase is

yellow plus the amount of time all phases are red before the

next one turns green. As its name denotes, it gives the previous

phase enough time to clear before the next conflicting phase

starts.

A week of history data is enough to train the SVR model.

Furthermore, as our results show, the SVR model does not

need to get continuously re-trained. Re-training the model

every 4 to 8 months is frequent enough in order to keep the

prediction errors small.

On the other hand, real-time (on a minute-by-minute scale)

traffic signal transition data are necessary in order to effec-

tively drive the prediction models. As we show in Section

7.4.3, the less complete and the older the available historic

information is, the lower the prediction accuracy becomes.

Because of the highly dynamic nature of traffic-adaptive traffic

signals, significantly higher participation (about two orders of

magnitude) is required for them as compared to pre-timed

traffic signals.

6 METHODOLOGY

6.1 Cambridge Deployment

As mapped in Figure 6, our November 2010 deployment in

Cambridge targeted three consecutive intersections on Mas-

sachusetts Avenue. We used 5 vehicles with iPhones mounted

on their windshields and asked the drivers to follow the

route shown for ∼3 hours. Note that the opportunity for

node encounters (within ad-hoc wireless range) was small,

as all the vehicles followed the same route so they are

rarely in range of each other. To rectify this, an extra iPhone

device was held by a pedestrian participant located at the

intersection of Massachusetts Avenue and Landsdowne Street.

This SignalGuru device served as an ad-hoc data relay node

facilitating data exchange between the windshield-mounted

iPhone nodes. Only the collaboration module was active on

A B

Fig. 7: The two distinct routes of taxis in Singapore
deployment in the Bugis downtown area. Routes A and B
correspond to phases A and B of the targeted intersection,
respectively. The targeted intersection is marked with a
circle.

the relay node. The experiment took place between 1:20pm

- 4:30pm. At 3:00pm, the traffic signals changed operation

mode from off-peak to afternoon peak.

6.2 Singapore Deployment (Bugis Downtown Area)
Our other deployment was in Singapore in August 2010.

Unlike Cambridge, the Singapore deployment tests SignalGuru

on traffic-adaptive traffic signals. To measure phase lengths

and predict the schedule of traffic-adaptive traffic signals,

SignalGuru needs to monitor all phases of an intersection, i.e.,
orthogonal directions of a traffic intersection. Hence, in this

deployment we had two sets of vehicles following the two

distinct routes shown in Figure 7. In this way, both phases

of the intersection (Bras Basah and North Bridge Road in

Singapore’s downtown) were sensed. Phase A corresponds

to vehicles moving along Bras Basah Road and phase B to

vehicles moving along North Bridge Road.

We used eight iPhone devices in total and mounted them

on the windshields of taxis. Five devices were moving on the

longer route of phase A and the other three on the shorter

route of phase B. Similarly to our deployment in Cambridge,

an extra iPhone device was used as a relay node. In this case,

the relay node was also recording the ground truth7, i.e., when

the traffic signals status transitioned. Ground truth information

was only used for offline evaluation of SignalGuru’s accuracy

thereafter. It was not shared with other participating nodes. The

experiment took place from 11:02am - 11:31am (∼30min).

7 SIGNALGURU EVALUATION
Here, we evaluate the performance of each of SignalGuru’s

modules before evaluating its overall performance in two

deployments in Cambridge and Singapore. We also performed

a large-scale analysis for SignalGuru’s prediction accuracy

based on the data we collected from Singapore’s Land Trans-

port Authority.

7. In our Cambridge deployment, since the schedule of the signals is fixed,
it can be easily inferred from the images logged by the windshield-mount
iPhones. Hence, there was no need to record the ground truth with an extra
iPhone device.
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Fig. 8: Traffic signal detection module evaluation.
R/Y/G/NO stands for video frames where the traffic
signal is actually Red/Yellow/Green or non-existent. A false
negative is when the module fails to detect the existing
traffic signal. A false positive is when the module confuses
an arbitrary object for a traffic signal of a specific R/Y/G
status. We omitted "Y" results as there were very few such
frames and hence the detection results are not statistically
important.

7.1 Traffic Signal Detection

We evaluate the performance of SignalGuru’s detection mod-

ule for our two deployments. In Figure 8, we show both

the percentage of false negatives (traffic signals that did not

get detected) and the percentage of false positives (arbitrary

objects confused for traffic signals of a specific color). Results

are averaged over 5959 frames and 1352 frames for the Cam-

bridge and Singapore deployments, respectively. The average

misdetection rate that includes both false negatives and false

positives was 7.8% for Cambridge and 12.4% for Singapore

deployment. In other words, SignalGuru’s detection module

correctly detected the existence (or the lack) of a traffic signal

in 92.2% and 87.6% of the cases in Cambridge and Singapore,

respectively. Note that most (>70%) video frames are captured

while vehicles are waiting at the red light. Hence, the average

(mis)detection rate is strongly biased by the results for "R",

i.e., frames with a red traffic signal.

As Figure 8 shows, the detection module is particularly

more likely to report a false positive when there is no traffic

signal in sight. When a traffic signal is captured in the video

frame, the actual traffic signal will normally get the most votes

in the Hough transform’s accumulator and a valid detection

will be recorded. If there is no traffic signal in sight, the

detection module will try to find the best possible candidate

object that most resembles a traffic signal in terms of its color,

shape and enclosing black box, which can trigger more false

positives.

Furthermore, the ratio of false positives of different colors

differs significantly across the two deployments. For example

in Cambridge, yellow light false positives are more common

than in Singapore, where there are more green light false

positives. This is because of the prevailing ambient light

conditions and the object composition of the environment at

the targeted intersections. In Singapore, there were many more

trees and also a black electronic message board with green

letters, whereas in Cambridge, the sun was setting, giving

Fig. 9: IMU-based detection window scheme evaluation for
Cambridge deployment. The IMU-based detection window
scheme almost halves the rate of misdetections.

a strong yellow glare to several objects (e.g., road signs,

vehicles, buildings, etc.).
Another interesting observation is that the number of false

negatives (missed traffic signal detections) is almost double

in the Singapore deployment, as compared to the Cambridge

deployment. The reason lies in the traffic signal bulbs used

in each city. Singapore’s LED bulbs are exposed, whereas

Cambridge’s are covered by a refraction lens. The LED traffic

signal bulbs consist of an array of smaller LEDs that is

refreshed in columns at a relatively low frequency. The refresh

frequency is high enough to be invisible to the human eye but

low enough to be detectable by a camera when there is no

refraction lens covering the bulb. In Singapore, the camera

would thus sometimes capture the bulbs with dark stripes

(columns) of unrefreshed LEDs, reducing the probability of

a successful traffic signal detection.

7.2 IMU-based Detection Window

In this section, we evaluate the benefits that the IMU-based

detection window offers. The iPhones were oriented horizon-

tally, as shown in Figure 3. The lower line of the detection

window will thus be horizontal and across the center of the

image when the vehicle is at a distance of ∼50m from the

intersection. Using online/offline traffic signal detection, we

collected results for when the IMU-based detection window

was activated/deactivated. The offline detection was based on

the same video frames that were logged and processed by the

iPhone devices online.

Figure 9 shows that the IMU-based detection window

almost halves the average misdetection rate, reducing it from

15.4% to 7.8%. Above all, the IMU-based detection window

significantly reduces the number of red false positives; when

the detection window scheme is not used and the whole

video frame is processed, the detection module often confuses

vehicles’ rear stop lights for red traffic signal bulbs.

On the other hand, the IMU-based detection window scheme

increases the number of false negatives when the traffic signal

is red. When a vehicle is decelerating abruptly to stop at the

red light, the IMU miscalculates the device’s orientation. As a

result, the detection window is also miscalculated, becoming

so small that the traffic signal is excluded. Nevertheless, the
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Fig. 10: Transition filtering module evaluation. The transi-
tion filtering module removes false positive reports without
significantly increasing the number of false negatives.
The iPhone devices witnessed 219 and 37 traffic signal
transitions in our Cambridge and Singapore deployments,
respectively.

effects of abrupt decelerations are only transient and a car is

soon able to detect the traffic signal ahead.

Finally, since only a fraction of the video frame is processed,

the IMU-based detection window scheme reduces the average

processing time by 41% (from 1.73s to 1.02s).

7.3 Transition Filtering
The performance of the transition filtering module is evaluated

in terms of the number of false positives (invalid transitions)

it manages to remove and the number of false negatives it

creates (valid transitions erroneously removed).

As shown in Figure 10, the probability of (unfiltered)

false positives in the Cambridge deployment is significantly

smaller when compared to the Singapore deployment. This

occurs for two reasons: First, the rate of false positive traffic

signal detections is smaller in Cambridge. Second, the average

waiting time at red traffic signals is only 19.7s for Cambridge

vs. 47.6s for Singapore. As a result, the probability of a

false positive transition detection during that waiting time is

significantly lower.

While the LPF and colocation filters each significantly

reduce the number of false positives, it is when both filters are

applied in series that all false positives are removed in both

deployments, with only a small increase in the number of false

negatives. More specifically, the probability of false negatives

increased by 6.8% for Cambridge and 8.1% for Singapore.

Thus, the transition filtering module effectively compensates

for our lightweight but noisy traffic signal detection module.

7.4 Schedule Prediction
7.4.1 Cambridge deployment
We evaluate the overall accuracy of SignalGuru’s traffic signal

schedule predictions for Cambridge’s pre-timed traffic signals.

As evaluation metric, we use the prediction mean absolute

error; the absolute error between the predicted and the actual

traffic signal phase transition time, averaged across the 211

predictions performed by the participating iPhone devices.

As shown in Figure 11, SignalGuru can predict the schedule

of pre-timed traffic signals with an average error of only 0.66s.

Fig. 11: Mean absolute error of SignalGuru’s traffic signal
schedule predictions for the three targeted intersections in
Cambridge. The error bars show the standard deviation
of the mean absolute error. The ground truth on the status
of traffic signals was inferred by the images logged by the
windshield-mounted iPhones with sub-300ms accuracy.

Fig. 12: Traffic signal schedule prediction evaluation for
Singapore deployment. The ground truth was recorded
every two seconds and the actual (ground truth) transition
time for a phase, e.g., A, was calculated as t ′A,R→G = (t ′A,R+
t ′A,G)/2. The measurement error was thus 1s (shown with
error bars).

Since SignalGuru uses a database for the settings of pre-timed

traffic signals, the prediction error is solely caused by the error

with which SignalGuru detects color (phase) transitions. When

SignalGuru captures and processes video frames every T=2s,

the transitions are theoretically detected with an error that has

a maximum value of εmax=T/2=1s and an expected value of

[ε]=T/4=0.5s. This is very close to the measured prediction

error value of 0.66s. With this very small prediction error,

SignalGuru can effectively support the accuracy requirements

of all applications described in Section 3.

7.4.2 Singapore deployment
We evaluate the accuracy of SignalGuru’s traffic signal sched-

ule predictions for Singapore’s traffic-adaptive traffic signals,

using the prediction mean absolute error as the evaluation met-

ric. The prediction module was configured to use the prediction

scheme PS3, and was trained offline using a week’s worth of

data (June 1-7 2010) that we obtained from Singapore’s Land

Transport Authority (LTA).

As our results in Figure 12 show, SignalGuru can predict

the time of the next color transition with an average error

of 2.45s. The next color transition prediction error is broken

down into an average absolute error of 0.60s in detecting

the current phase’s start time (detection module error) and an

average absolute error of 1.85s in predicting the length of the
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Fig. 13: Evaluation of the different prediction schemes for
Bugis and Dover traffic signals.

current phase (prediction module error). The prediction error is

due to both the inaccurate phase duration measurements that

are fed into the SVR model and the prediction error of the

SVR model, with the latter being the main contributor. The

phase duration measurement error has a triangular probability

density function8 and the expected value for the phase duration

measurement absolute error is only [εduration]=T/3=0.66s. Re-

sults are averaged over 26 predictions. The schedule prediction

accuracy for the two phases is comparable.

Without collaboration and high enough participation, Sig-

nalGuru would not be able to measure the past length of

the phases for the purpose of feeding them into the SVR-

based prediction scheme and predicting their future lengths.

SignalGuru would have to predict the future phase length for

a traffic-adaptive traffic signal using the same scheme that it

uses for pre-timed signals i.e., by using a typical fixed value

for it. Such a value could be, for example, the average length

of the phase during the same hour of the previous day. In

this case, the prediction error. for our Singapore deployment

would have been 11.03s instead of 2.45s (3.5X higher). In the

next section, we evaluate the performance of SignalGuru for

different degrees of participation.

7.4.3 Singapore Large-scale Prediction Analysis
In order to perform a large-scale evaluation of the performance

of SignalGuru’s prediction module across different traffic

signals and intersections with different traffic patterns, we

collected traffic signal operation logs from Singapore’s Land

Transport Authority. More specifically, we collected logs for

32 traffic signals (phases) in the Dover (suburban) area and

for 20 traffic signals (phases) in the Bugis (downtown) area.

The logs spanned over the two weeks of June 1-14, 2010 and

contained more than 200,000 phase lengths for both Bugis and

Dover traffic signals. We used the logs of the first week to train

the different SVR-based prediction schemes, and the logs of

the second week to test their performance. The training and

testing sets were therefore not overlapping.

Prediction Schemes Evaluation. In Figure 13, we evalu-

ate the performance of the different phase length prediction

schemes for the traffic signals of Dover and Bugis. We also

include the performance of a baseline scheme "PS0" that uses

the last measurement of a phase’s length as the prediction for

8. Assuming errors for the detection of phase start and stop times are
independent and uniformly distributed in [0, T/2].

Fig. 14: Evaluation of SignalGuru’s prediction scheme
PS3 when predicting multiple phases ahead for Bugis and
Dover traffic signals.

its future length. PS3 outperforms PS1 and PS2 and reduces

the phase length prediction mean absolute error by 37% (from

3.06s to 1.92s) for Bugis and by 26% (from 1.60s to 1.19s)

for Dover when compared to PS0.

As shown in Figure 13, the prediction mean absolute error

for Dover traffic signals is half when compared to the error

for Bugis traffic signals. However, note that the average phase

length for Bugis is 47s whereas for Dover it is only 28s. As a

result, the relative errors are more comparable: 4.1% for Bugis

and 4.3% for Dover.

Surprisingly, we found that the theoretical prediction

scheme PS4, which assumes knowledge of loop detector

information, does not outperform PS3. We believe that this is

because the effects of loop detector measurements are already

captured by SCATS in the history of the phase and cycle length

settings that it chooses. SignalGuru measures them and uses

them as prediction features for PS3.

Increasing available lead-up time. In order to increase

the available lead-up time beyond the length of a single

phase9, SignalGuru needs to predict multiple phases ahead. For

traffic-adaptive traffic signals, the prediction error increases as

SignalGuru tries to predict multiple phase lengths ahead. For

pre-timed traffic signals, for which the phase lengths are fixed

and known, the prediction error only depends on the ability

of SignalGuru to synchronize accurately with the traffic signal

and thus lead-up time is arbitrarily long so long as it is within

the same traffic mode.

Figure 14 shows the error of the prediction module, when it

predicts the lengths of multiple phases ahead. The prediction

error increases sublinearly as the number of predicted phases

increases. However, even when predicting four phases ahead,

the total prediction error for all phase lengths is only 4.1s

(8.7%) and 2.4s (5.2%) for Bugis and Dover traffic signals,

respectively. Given that wireless 802.11g can broadcast a

kilobyte of data over several hops in <1s, the average avail-

able lead-up times for Bugis and Dover are 187s and 114s,

respectively. The percentage of available data (% transitions

detected) in our Singapore deployment was 81%.

As this analysis shows, SignalGuru can predict accurately

the schedule of traffic-adaptive traffic signals regardless of

their location, e.g., suburban or downtown. Furthermore, their

schedule can be predicted multiple phases in advance with

9. Predicting a single phase in advance suffices for all proposed applications
except TSAN.
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Fig. 15: Phase length prediction accuracy for Bugis and
Dover traffic signals as the percentage of the available
traffic signal transition data varies.

Fig. 16: Prediction model performance over time. The
prediction performance of the SVR model that was trained
with the data of June 1-7 2010 is evaluated for the weeks
of June 8-14 2010, July 1-7 2010, October 1-7 2010 and
February 1-7 2011.

small errors, enabling all the novel applications mentioned in

Section 3 for traffic-adaptive traffic signals.

Collaboration Benefits. Figure 15 shows how the accuracy

of phase length predictions depends on the data availability.

Namely, accuracy depends on the percentage of traffic signal

transitions that are detected and made available (through

collaborative sensing and sharing). Where the phase length

cannot be determined (because no SignalGuru node detected

its start or end), we used the previously predicted phase

length. The more transition data is available (higher degree

of collaboration), the better SignalGuru’s prediction accuracy.

When data availability drops below 25% for Bugis and 28%

for Dover, relative prediction errors degrade to >10%. As a

result, SignalGuru can no longer meet the requirements of the

described applications. Collaboration is thus critical to ensure

high-quality predictions.

SVR re-train frequency. We evaluate how well the SVR

model that was trained using the data of June 1-7, 2010 can

predict the schedule of the traffic signals after one week (June

8-14, 2010), one month (July 1-7, 2010), four months (October

1-7, 2010) and eight months (February 1-7, 2011). As shown

in Figure 16, the SVR model can make accurate predictions

even after 8 months. More specifically, the error for Dover

traffic signals does not significantly increase over time. In

contrast, for Bugis traffic signals, the prediction error increases

by 33% (from 1.9s to 2.6s) after 8 months. LTA engineers

manually perform changes to the traffic signal settings (e.g.,
phase programs) over time in an attempt to better optimize the

TABLE 1: Computation resources required by Signal-
Guru’s different modules. The computation resources for
the traffic signal detection module is further broken down
in Table 2.

% Application CPU % System CPU CPU Time (sec)
Traffic Signal Detection 66.57 51.12 1.02

Logging 21.94 16.85 0.34

Image Format Conversions 2.85 2.19 0.04

Communication 1.35 1.04 0.02

Schedule Prediction 0.52 0.40 0.01

Misc. (display, etc.) 6.77 5.20 0.10

Total 100.00 76.79 1.53

TABLE 2: Computation resources for the different steps of
SignalGuru’s traffic signal detection algorithm.

% Application CPU % System CPU CPU Time (sec)
Color Filtering 7.71 5.92 0.12

Laplace Edge Detection 3.59 2.76 0.06

Hough Transform 30.55 23.46 0.47

Find max in Accumulator 21.64 16.62 0.33

Misc. 3.07 2.36 0.05

Total 66.57 51.12 1.02

traffic signals operation in the busy Singapore downtown area.

As a result, SingalGuru’s prediction ability degrades over time

for Bugis, and the SVR model needs to get retrained every

couple months in order to keep prediction errors low.

7.5 SignalGuru Service Overhead
In this section, we present the computational (CPU, memory)

and communication resources that SignalGuru consumes. We

profiled SignalGuru across one hour using Xcode’s CPU

Sampler performance tool. During the profiling, the iPhone

3GS device was facing the first intersection of Figure 6 at

a distance of ∼30m from the traffic signal. SignalGuru was

configured to process a new frame every 2 seconds using

the IMU-based detection window scheme. The GPS and IMU

modules were thus activated.

In Table 1, we show the computation time for the different

components of SignalGuru. About 67% of the application CPU

time is spent for the traffic signal detection. This corresponds

to 51% of system CPU time. The logging of images takes

up 22% of the application CPU time10. For pre-timed traffic

signals, the traffic signal schedule prediction takes less than

10ms. For traffic-adaptive traffic signals, the prediction is

based on the SVR models and takes 21ms.

Although SignalGuru is using only 77% of the system CPU

time in this configuration, we could not further increase the

video frame capture and traffic signal detection frequency. We

found that when increasing this frequency by 20%, the GPS

location updates would become very infrequent (<0.1Hz). This

had detrimental effects as SignalGuru’s traffic signal detection

was not activated/deactivated promptly on approaching/leaving

a signalized intersection.

The average memory footprint of SignalGuru was

120.0 MB. However, only 20.1 MB, on average, were kept

in actual RAM. The remaining 99.9 MB were assigned by

10. Image logging was necessary in our experiments so that we can test
whether the traffic signal detection was successful or not. In a real system,
image logging would be disabled.
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Fig. 17: GLOSA fuel efficiency evaluation.

the iOS to virtual memory. The iPhone 3GS devices have

256 MB of eDRAM. SignalGuru thus takes up only ∼8%

of the device’s actual RAM resources.

The communication resources required, per smartphone,

to collaboratively support SignalGuru are limited. Less than

1 KB/s and 22 KB/s are exchanged for pre-timed and traffic-

adaptive traffic signals, respectively. The difference lies in the

sizeable SVR models that are exchanged in the case of traffic-

adaptive traffic signals.

7.6 GLOSA Fuel Efficiency

For evaluating GLOSA, we used a 2.4L Chrysler PT Cruiser

’01 city vehicle. We measured its fuel efficiency by connecting

to its Controller Area Network (CAN) with a Scan Tool OBD-

LINK device (Figure 3). The fuel efficiency was calculated

based on the Intake Manifold Absolute Pressure (IMAP)

approach with the help of the OBDwiz software. The trip

starts at P1 and ends at P2 on Figure 6, including the three

intersections in our Cambridge deployment.

The driver completed 20 trips, following GLOSA’s ac-

curate advisory (< 1s mean absolute prediction error11) at

odd-numbered trips, and driving normally (without GLOSA’s

advisory) at even numbered trips. When following GLOSA’s

advisory, the driver was able to avoid most stops (the driver

sometimes had to brake because of pedestrians or cars in

front). When not, the driver had to stop from zero to three

times during each of the trips. As shown in Figure 17, GLOSA

can offer significant savings reducing fuel consumption, on

average, by 20.3% (from 71.1ml to 56.6ml). In other words,

GLOSA improves the vehicle’s mileage, on average, by 24.5%

(from 16.1 mpg to 20.1 mpg).

8 COMPLEX INTERSECTIONS

In this section, we discuss practical issues regarding the

operation of SignalGuru in complex intersections, as well as

how SignalGuru can overcome them. In a complex intersection

with many traffic signals, SignalGuru must be able to detect

the correct traffic signal and also identify to which vehicular

movement the detected traffic signal corresponds.

11. For small distances from traffic signals we found that it is more
beneficial to provide the driver with the transition time instead of the
recommended speed. First, for small distances (<50m) the GPS error is
significant and second, the driver can better account for vehicles stopped at
the intersection and time their acceleration appropriately.

8.1 Traffic Signal Detection
In a complex intersection with many traffic signals, SignalGuru

will normally still detect the correct traffic signal, i.e., the

one that corresponds to the road segment that the vehicle

is currently on. Normally, a vehicle that is approaching an

intersection on a given road segment, will be able to view only

the corresponding traffic signal at a zero-degree angle. The

traffic signals of the other road segments may be still within

the camera’s field of view, but will be seen at some angle.

At angles > 90 ◦ the traffic signal bulbs will not be visible.

At smaller angles, the bulbs will be visible but will recorded

on the video frame as ovals instead of circles. Furthermore,

these ovals will be partially occluded by the traffic signal

housing visors. While SignalGuru can still detect partially

deformed and occluded traffic signals, its Hough transform

voting algorithm will favor the most round and least occluded

traffic signal i.e., the one that corresponds to the road segment

that the vehicle is currently on.

Moreover, information about the exact location of traffic

signals at an intersection can be leveraged to further narrow

down the size of the IMU-based detection window. In this way,

both the accuracy and the speed of the traffic signal detection

will get improved. The locations of the traffic signals can be

detected and recorded by the SignalGuru devices themselves.

8.2 Traffic Signal Identification
In a complex intersection with more than one traffic signal,

SignalGuru needs to identify which specific traffic signal it is

detecting, i.e., to which direction of movement the detected

traffic signal corresponds. While GPS localization can be

used to identify the intersection, it is often not accurate

enough to distinguish between the different road segments of

an intersection. The identification of the traffic signal being

detected is necessary in order to appropriately merge the data

detected across different vehicles.

The traffic signal is identified based on the GPS heading

(direction of movement) of the vehicle that is detecting it, as

well as the shape of the traffic signal (round, right/left turn

arrow, etc.). The heading of the vehicle is used to identify the

road segment on which the vehicle is located by matching its

reported GPS heading (d ◦+δ ◦, where δ ◦ is the measurement

error) to road segment that has the closest orientation (d ◦).

The number and orientation of the intersecting road segments

at any given intersection can either be acquired by mapping

information [23] or learnt by clustering movement traces of

SignalGuru-enabled vehicles. Then, for example, a vehicle can

tell that the signal it is detecting is for vehicles that want to turn

left and are approaching the intersection on the road segment

that is attached to the intersection at d ◦ degrees compared to

geographic north.

9 COLLABORATIVE SERVICES
Besides SignalGuru, windshield-mounted smartphones can

support a rich set of novel collaborative services with their

cameras. We briefly describe here four additional services:

Parking space availability service. Windshield-mounted

smartphone cameras can process captured images to discover
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available parking spots and subsequently disseminate infor-

mation about their location to drivers that are looking for a

free spot. Free parking spots can be discovered by detecting

features like the wheels of parked cars and the lines that

segment parking spots.

Bus localization and arrival time service. Windshield-

mounted smartphones could be used to support a grassroots

bus localization and arrival time service. Windshield-mounted

smartphone cameras can detect and identify buses by detecting

their license plates and IDs. Bus IDs are often displayed with

bright LED signs, making their detection and identification

task significantly easier. On encountering and identifying a

bus, smartphones can estimate and disseminate the bus arrival

time based on the their location and the prevailing traffic

conditions [29].

Taxi discovery service. In some cities (e.g., Singapore),

taxis have LED signs on their roof that show whether the taxi is

free ("TAXI" shown in green) or busy ("BUSY" shown in red).

Windshield-mounted smartphones could detect the color-coded

text displays to discover free taxis and inform prospective

passengers about where they can find one.

Cheap gas advisory service. Windshield-mounted smart-

phone cameras could detect the large signs that typically gas

stations have and read off the gas prices. The gas prices

would then be disseminated and shared with other vehicles

to collaboratively support a service that helps drivers find the

cheapest gas around them.

While detecting available parking spots or reading off gas

prices may be harder computationally than detecting a traffic

signal, the time constraints are not as tight. Traffic signal

detection needs to be fast so that new frames can be processed

as frequently as possible and the traffic signal transition times

are detected as accurately as possible. Particularly for the

cheap gas advisory service, the time constraints are very loose.

A windshield-mounted smartphone could capture an image

and take several seconds or even minutes to process it and

detect the prices. To improve the detection accuracy, still

images could be captured instead of the video frames that

we used to increase detection speed for SignalGuru.

10 RELATED WORK

Several collaborative systems have been proposed that crowd-

source information from GPS, accelerometer and proximity

sensors in order to estimate traffic conditions [11], [21], [29],

detect road abnormalities [7], collect information for available

parking spots [20] and compute fuel efficient routes [8]. In

[18] Lee et al. propose an application that lets police track the

movement of suspicious vehicles based on information sensed

by camera-equipped vehicles. Other works have also proposed

to equip vehicles with specialized cameras and detect traffic

signals with the ultimate goal of enabling autonomous driving

[9], assisting the driver [22], or detecting the location of in-

tersections and overlaying navigation information [28]. In [5],

[31], the authors enforce traffic laws (e.g., detection of red light

runners) by detecting traffic signals and their current status

with stationary cameras affixed to infrastructure. Furthermore,

as we discussed in the introduction, approaches aiming to

enable GLOSA have been based on costly infrastructure and

hence failed to grow in scale. To the best of our knowledge, no

other work has proposed to leverage commodity windshield-

mount smartphone cameras, or above all, to predict the future
schedule of traffic signals for the purpose of providing it to

users and enabling the proposed set of novel applications.

Our camera-based traffic signal detection algorithm draws

from several schemes mentioned above [9], [22], [28]. How-

ever, in contrast to these approaches that detect a single target,

SignalGuru uses an iterative threshold-based approach for

identifying valid traffic signal candidates. We also propose

the IMU-based detection window scheme that leverages in-

formation from smartphones’ accelerometer and gyro devices

to narrow down the detection area offering significant perfor-

mance improvements. In order to be able to detect ill-captured

traffic signals under poor ambient light conditions, previous

approaches either use normalized RGB images [22] or estimate

ambient illumination [5]. In contrast to these approaches, we

leverage the observation that LED traffic signals are a light

source of a fixed luminous intensity, and provide mechanisms

to perform a one-time automatic adjustment of the smartphone

camera’s exposure setting. In this way, the camera hardware is

configured to capture traffic signal bulbs correctly regardless of

the prevailing ambient light conditions, obviating the need for

additional image processing steps. Last and most important, all

these prior works focus solely on reporting the current status of

traffic signals. They are not concerned with phase transitions

and thus do not propose schemes to filter them, or collate the

past traffic signal schedule for prediction of the future.

Services like SignalGuru that are based on collaborative

sensing naturally have trust, privacy, security implications.

SignalGuru can use DLT certificates [19] or a TPM [26] in

order to improve trust in the exchange of traffic signal data.

Furthermore, the SignalGuru-enabled devices and their users

can be safeguarded by spatio-temporal cloaking [10] and other

proposed approaches for grassroots participatory sensing [12].

11 CONCLUSIONS

In this paper, we presented a collaborative sensing platform

that is based on the cameras of windshield-mounted smart-

phones. We discussed several novel services that this platform

enables and focused on SignalGuru. SignalGuru is a novel

service that leverages collaborative sensing on windshield-

mount smartphones, in order to predict traffic signals’ future

schedule and support a set of novel applications in a fully

distributed and grassroots approach. Our proposed schemes

improve traffic signal detection, filter noisy traffic signal data,

and predict traffic signal schedule. Our results, from two real

world deployments in Cambridge (MA, USA) and Singapore,

show that SignalGuru can effectively predict the schedule for

not only pre-timed but also state of the art traffic-adaptive

traffic signals. Furthermore, fuel efficiency measurements, on

an actual city vehicle, highlight the significant fuel savings

(20.3%) that our SignalGuru-based GLOSA application can

offer. We hope that this work will motivate further research in

our proposed collaborative sensing platform and the services

that it can enable.
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