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Abstract

Mobile devices, such as smartphones and personal media players, have recently

significantly increased in popularity thanks to the rich set of mobile cloud services that

they allow users to access. Networked vehicular computing devices are also expected

to be commonplace in the near future, as they will enable a wide range of driver

assistance services. The ubiquitous penetration of mobile services, however, has been

thwarted by their poor user experience; access to mobile cloud services typically occurs

over slow and costly long-range cellular communications.

This thesis focuses on improving the user experience of mobile services by reducing

the need for costly long-range cellular communications. To achieve this, the thesis

proposes to host more service functionality on mobile devices themselves. In this way,

mobile devices are often able to serve requests either locally or by contacting neighbor

devices over short-range communications. Two novel mobile service architectures are

proposed for the two different types of mobile services: traditional non-geo-locality

services and emerging geo-locality services.

A service is termed to have the geo-locality property when its data are both

generated (sensed or input) and consumed locally, i.e., within a specific geographic

region. In other words, for services that have the geo-locality property, only mobile

devices within a specific geographic region R can generate the necessary service data

and only devices within the very same region R are interested in consuming it. For

non-geo-locality services, the data is generated either by cloud servers or by users

regardless of their location. Data generation and/or consumption are also typically a

function of the users’ personal interests and not of their geographic location.

For traditional non-geo-locality services, this thesis proposes the Pocket Cloudlets

architecture. The Pocket Cloudlets architecture is a mobile device-resident caching

scheme that serves cloud service requests locally on the device, when possible, signifi-

cantly reducing the need for slow and costly long-range communications. The Pocket
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Cloudlets architecture leverages both personal user and collaboratively-generated

community access patterns to selectively replicate parts of the cloud service locally on

the mobile device. Pocket Cloudlets are also adaptively updated by detecting emerging

popular service data items and prefetching them on the mobile device. Our analysis

shows that the proposed Pocket Cloudlets architecture can effectively augment several

traditional cloud services, like mobile web search. PocketSearch, our prototyped mobile

search pocket cloudlet, reduces the average service access time by a factor of 2.7×

and the required communication bandwidth by 66%.

For emerging geo-locality services, the thesis presents the Region-Resident Services

(RegReS) middleware. RegReS allows a rich set of emerging geo-locality services to

be fully supported on confederations of mobile devices. Mobile devices collaborate

to provide a geo-locality service within a specified region and over a specified service

lifetime by utilizing only short-range ad-hoc communications. In this way, RegReS

completely eliminates the need for long-range cellular communications. Although

mobile devices are becoming increasingly powerful, their resources are constrained

and should be used judiciously. RegReS enables the efficient provision of geo-locality

services by allowing services to specify their target service carrier density. Only

as many service carriers as specified are subsequently maintained by RegReS. As

opposed to previously proposed static schemes, RegReS employs a fully distributed,

collaborative and adaptive estimation scheme to track the existing service carrier

density and make decisions about the spawning of new carriers, when necessary.

Thanks to collaboration and adaptation, RegReS can maintain the desired density

with only 16% mean absolute error across a wide range of configurations.

To demonstrate the potential of collaborative mobile device-based computing

platforms that are enabled by middleware like RegReS, the thesis presents a rich set

of novel services that such platforms can enable. More specifically, the thesis focuses

on the type of services that are typically most challenging and resource-intensive
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(e.g., CPU), camera-based services. We introduce five such services and prototype

SignalGuru, a camera-based traffic signal schedule advisory service. SignalGuru lever-

ages opportunistic sensing and collaboration across windshield-mounted smartphones

and their cameras to provide drivers with information about the schedule of traffic

signals ahead. Results from two deployments of SignalGuru, using iPhones in cars

in Cambridge (MA, USA) and Singapore, show that traffic signal schedule can be

predicted with very good accuracy. On average, SignalGuru comes within 0.66s, for

pre-timed traffic signals and within 2.45s, for traffic-adaptive traffic signals. Feeding

SignalGuru’s predicted traffic schedule to our Green Light Optimal Speed Advisory

(GLOSA) application, our vehicle fuel consumption measurements show savings of

20.3%, on average. SignalGuru information can also be fed into several other envi-

sioned applications to further improve fuel efficiency, vehicle flow, travel time and road

safety. The example of SignalGuru illustrates that with collaboration and adaptation,

mobile device-based computing platforms can support a rich set of challenging services

without the help of cloud servers and the associated long-range communications.

Overall, this thesis advocates and demonstrates that, with collaboration and

adaptation, mobile devices can effectively support a rich set of services and thus

reduce the need for slow and costly long-range cellular communications to cloud

servers. Several traditional cloud services that operate on very large amounts of data

can be selectively and adaptively hosted on mobile devices. Furthermore, novel mobile

services that may seem prohibitively resource-intensive and challenging can be enabled

and hosted on confederations of collaborating mobile devices. In this way, the mobile

user experience can be greatly improved and a significant amount of the increasingly

scarce long-range communication bandwidth can be saved.
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Chapter 1

Introduction

1.1 Introduction: Rise of Networked Mobile Devices

Networked mobile devices are becoming increasingly pervasive. The number of mobile

Internet users is expected to far exceed the number of desktop Internet users and reach

1.8 billion by the end of 2014 [101]. Smartphones are popular because they allow their

mobile users to access many different types of information through a rich set of cloud

services. Mobile users can use a search engine service to locate and access any type

of information that resides within the World Wide Web while on-the-go. Users can

also access real-time information pertinent to their commute (e.g., traffic information,

bus schedules, etc.) as well as several other types of location-based information via

dedicated cloud service applications and interfaces. Mobile devices are expected to

soon become the dominant computational devices and the major means of access to

the Internet and other sources of information.

Besides personal media players and smartphones, networked vehicular computing

devices are expected to be commonplace in the near future as well. Already, several

vehicles (e.g., Lexus IS) are equipped with specialized onboard computational units

that have not only location (e.g., GPS) and motion sensors (e.g., accelerometer) but
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also wireless interfaces like Bluetooth. In addition, vehicular computational devices are

expected to be augmented with more powerful short-range communication interfaces

(e.g., 802.11p [61, 148]). These new wireless interfaces will effectively enable vehicle-

to-vehicle and vehicle-to-infrastructure communications for the purpose of supporting

novel driver-assistance applications.

Mobile devices are not only increasing in numbers but also becoming increasingly

computationally powerful and sensor-rich. This is particularly the case for smartphones.

Dual-core smartphones clocked at 1.2GHz are already in the market and quad-core

ones are expected soon. Smartphones are also typically equipped with microphone,

GPS, accelerometer, gyroscope, compass, ambient light sensor, one or more cameras,

touch screen and multiple communication interfaces (cellular, Wi-Fi, Bluetooth).

Communication interfaces can be used not only for communication but also for sensing

RF signals. Near Field Communication (NFC), radar, temperature, humidity and

gas sensors may be commonplace in future smartphones as well. In Section 1.5, the

technology trends for mobile devices are presented in greater detail.

Thanks to their pervasiveness, increased computational capabilities and rich set

of sensors, smartphones have become the main means for mobile users to contribute

real-time data. Users share their comments and reviews about events in real-time

by publishing comments in their preferred online portal [154] or social network [35]

and augmenting them with photos that they capture with their phone’s cameras.

Users can also decide to contribute their GPS and accelerometer data as they are

drive or ride the bus. By crowd-sourcing such information from everyday users, an

accurate and comprehensive real-time traffic updates cloud service can be supported

[99]. Information crowd-sourced from mobile devices can also be used to detect road

abnormalities [33], collect information for available parking spots [19, 98], track the

location of transit vehicles [144] and measure air or noise pollution [116].
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A big collaborative ecosystem of mobile users is thus emerging. In contrast to

traditional desktop users, mobile users are not only consumers but also producers of

many different types of real-time data. These data comes either from manual user

input or from automatic sensor readings and can be used to improve current services

or enable new ones altogether.

1.2 Motivation: Shortcomings of Existing Mobile

Cloud Service Architecture

Commercial mobile services are typically hosted on Internet cloud servers accessed over

long-range communications. Cloud servers aggregate, process and maintain all the

service data. Mobile devices need to contact the cloud server whenever they want to

consume data or contribute data that they have generated (input by user or sensed by

device sensors). Mobile devices, despite their increased capabilities, are used as dumb

terminal devices just for input/output. For example, in the case of a parking spot

availability service [98], all data about detected parking spots are uploaded to a cloud

server that is potentially located hundreds or thousand of miles away. Users looking

for parking spots will then have to contact this server to learn about availabilities.

The traditional cloud service architecture is ill-suited for mobile services. The cloud

service architecture was originally designed for desktop users with highly available and

fast wired network connectivity. Cloud services, however, are typically accessed by

mobile devices over costly long-range cellular Internet communications. Long-range

communications typically provide good coverage in residential areas but come with

several side effects. These side effects sometimes make their use impractical or lead to

poor quality of service.

First, cloud services when accessed on mobile devices suffer from high network

latencies. Unlike the desktop domain where the connection to any cloud service
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Figure 1.1: Cellular bandwidth demand versus capacity [127].

takes place over very fast and almost always available links (i.e., Ethernet), in the

mobile domain users rely on cellular radios that tend to exhibit significantly higher

latency and unpredictability. For instance, the response time for a web search service

is typically at least one order of magnitude higher on a 3G-connected smartphone

compared to an Ethernet-connected desktop machine [58, 81].

Second, the cellular bandwidth, on which the existing mobile cloud service archi-

tecture depends, is a scarce resource. At peak times, some cell towers are already

getting overloaded. The cellular data bandwidth is expected to become soon an even

scarcer resource. As Figure 1.1 shows, the average monthly demand for cellular data

bandwidth is expected to have exceeded the available capacity by 2014. In 2016, the

demand is expected to be three times greater than the possible capacity despite the

integration of new technologies (e.g., 4G). The architecture for mobile services needs

to change. Scarce long-range cellular bandwidth should be used only when necessary.

Third, long-range cellular radios impose not only a latency and bandwidth, but

also a power bottleneck. Mobile devices are battery-operated and the cellular radio,

along with the processor and the screen, is one of the most power-hungry components.

The more data are exchanged and the more time the radio link is active, the lower
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the battery lifetime of the mobile device becomes, creating a negative user experience.

Short-range communications are significantly more power-efficient (Section 2.6.1).

Fourth, long-range cellular radios are not always available. Several types of mobile

devices like laptops, Internet tablets and personal media players (e.g., iPod) are

typically equipped only for short-range communications. Long-range communications

come at an additional cost of purchasing higher-end models or extra hardware. As a

result, the use of long-range communication is sometimes not even an option. Mobile

services should be re-architected and made accessible over short-range communications,

when possible.

Last but not least, even when long-range cellular communications are available,

their use for Internet access comes with significant monetary costs to users. The

inclusion of an unlimited data plan can significantly increase the cost of a cell phone

contract. As a result, users may be unwilling to undertake that cost and instead,

opt for limited data plans. In such plans, cellular providers charge users a relatively

high premium for each KB of data that they upload or download. Moreover, roaming

charges for data services are often prohibitive when traveling. Therefore, cellular

Internet communications should be used judiciously.

1.3 Proposed Approach: Collaborative and Adap-

tive Mobile Device-resident Services

Depending heavily on long-range communications, the traditional mobile cloud service

architecture leads to poor experience for mobile users. In order to alleviate the

shortcomings of the traditional cloud service architecture, this thesis proposes to host

mobile services either partially or even fully on the mobile devices themselves. In this

way, requests are served locally on the device or over short-range communications,

when possible, and long-range communications are avoided. To enable mobile device-
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resident services, the thesis introduces two alternative service architectures for the two

different types of mobile services; traditional non-geo-locality services and emerging

geo-locality services. A service is termed to have the geo-locality property when its

data is both generated (input or sensed) and consumed locally, i.e., within a defined

geographic region. The differences between non-geo-locality and geo-locality services

are summarized in Table 1.1. In Section 1.6, the properties of these two types of

services and the proposed architectures for them are discussed in more detail. To

be effective, both the proposed mobile service architectures and the services running

atop employ inter-device collaboration and adaptation to the variable environment

parameters. As our results show, collaboration and adaptation are both critical.

1.4 Related Work: Caching of Services

To avoid poor wireless communications and improve performance, both commercial

and proposed academic approaches employ caching. Besides mobile services, temporal

and spatial locality in data accesses has been widely leveraged to selectively cache parts

of the data and thus minimize the need for slow network or next-level memory accesses.

Caching has been employed in a wide variety of systems ranging from processor chips

[48, 136], to operating systems [11, 146], network file systems [6, 105], database systems

[13, 41, 135], distributed mobile device-based services [19, 95], cloud-based services

[15, 96, 112, 115] and others. In these works, several different cache-replacement

policies have been proposed. Some proposed caching schemes also employ intelligent

prefetching [14, 52, 113, 147] methods to further improve the cache hit rate.

1.4.1 Non-Geo-locality Cloud-based Services

For traditional non-geo-locality cloud services, caching has been extensively employed

to reduce latency and server load. Caching has been commercially deployed or proposed
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Table 1.1: Key differences between non-geo-locality and geo-locality ser-
vices.

Non-geo-locality
Services Geo-locality Services

S
er
vi
ce

P
ro
p
er
ti
es

Data Type
Typically very large in
size; data of global impor-
tance.

Relatively smaller in size;
data of only local impor-
tance.

Data Generation

Typically location-inde-
pendent. Generated by
cloud server or geographi-
cally distributed users as
a function of their per-
sonal interests.

Location-dependent. In-
put/sensed by users/devi-
ces within a specific geo-
graphic region.

Data Consumption
Typically location-inde-
pendent. Based only on
user’s personal interests.

Location-dependent.
Consumed by users
within a specific geo-
graphic region (same
region where data was
initially generated).

P
ro
p
os
ed

S
er
vi
ce

A
rc
h
it
ec
tu
re

Challenge

Very large data set; need
to filter with caching
and prefetching for
power/performance.

Constrained mobile de-
vice resources for service
and data hosting; need to
trade off with service ac-
cess latency and sensing
coverage.

Data Caching
Location-independent.
Depends only on personal
user interests.

Location-dependent. The
type/subset of data
(sensed and) cached
varies depending on
location.

Request Serving

From local cache when
possible. Otherwise from
cloud server over long-
range communication.

From local cache when
possible. Otherwise from
neighboring mobile de-
vices over short-range
communication.
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to improve access to distributed network file [6, 105] and database systems [13, 41, 135],

DNS [112], web content [15, 97, 113, 115] and search results [96]. Deployed and

proposed approaches for cloud service caching are based on a multi-tier architecture

in which the data are cached both on the cloud server and on intermediate proxy

devices. Several of these services, including web content, are heavily cached on the

user’s mobile device as well. For others (e.g., web search), however, only cloud-based

(server, proxy) caching schemes have been proposed.

For mobile cloud services, in particular, local caching on the user’s mobile device

is the most critical. As explained in Section 1.2, mobile cloud services suffer from

the last mile problem. The long-range communication to cellular base stations is the

bottleneck in mobile cloud service access that leads to poor user experience. As a

result, alleviating the need for long-range communications to proxy devices or the

actual cloud servers yields by far the most performance benefits.

This thesis advocates that several popular services that were traditionally thought

to belong to the cloud, can be effectively cached on mobile devices as well. To enable

such caching, the thesis proposes the Pocket Cloudlets architecture, a mobile device-

resident caching architecture. The design of the proposed architecture is based on

technology trends that this thesis analyses. Five services that can be supported on

the Pocket Cloudlets architecture are briefly described and a mobile search engine

service is analyzed and evaluated in detail.

1.4.2 Geo-locality Mobile Device-based Services

The idea of location-based services, i.e., services that are of interest and should

be provided only to nodes within a specific geographic region, started as early as

1987, when Finn proposed location-based routing [37]. The interest in location-based

services increased significantly after 1994, when GPS became fully operational. Ever

since node location information has been widely used for node addressing and routing
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[37, 74, 104], service replication and placement [52, 54], sensor activation [54, 86], to

establish trust in user-generated content [90] and other purposes. Furthermore, an

increasing number of location-based services have been proposed. Location-based

services recently proposed include traffic advisory [99], road conditions advisory [33],

parking spots availability information [19, 98], air and noise pollution information

[116].

Although all these proposed services possess the geo-locality property, most of

them [33, 98, 99, 116] depend on cloud servers to cache and maintain the sensed

information. However, as discussed in Section 1.2, this traditional cloud-based mobile

service architecture has significant limitations.

In contrast, some other proposed approaches leverage the mobile devices themselves

to cache and maintain the geo-locality service’s information across time. Two main

mobile device-based service-maintenance approaches have been proposed for unreliable

and uncontrolled mobile networks: 1) push-based schemes [19, 89, 92, 93, 95] that

push and assign the service (data caching and sensing) on all nodes within a region

and 2) pull/subscription-based schemes [91, 95] in which only nodes interested in using

(pulling) the service will maintain (cache and sense data for) it.

None of these two schemes can support geo-locality services effectively. Push-

based schemes are wasteful; in dense urban environments that most of these proposed

services target, it is often redundant and wasteful to use all the available mobile devices.

Mobile device resources are constrained and should be used judiciously. At the same

time, pull-based schemes may lead to poor service quality; often a disparity will exist

between the number of the nodes that are interested in consuming the service (e.g.,

parking spot availabilities) and the number of nodes that are necessary to support it

efficiently (detect most available parking spots robustly). A critical capacity of service

carriers is necessary for each geo-locality service. While using more service carriers is

wasteful, using fewer may lead to poor service quality.
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To enable efficient maintenance of geo-locality services, this thesis proposes the

Region-Resident Services (RegReS) middleware. In contrast to previous work, RegReS

allows services to specify their desired service carrier density, i.e., the number of

mobile devices per unit area that should be providing the service (caching and sensing

of data). RegReS maintains this density in a fully-distributed, collaborative and

adaptive approach, attacking key challenges of emerging everyday user mobile device

networks (e.g., smartphone and vehicular networks) without the need for cloud servers

and long-range communications to reach them.

1.5 Trends in Mobile Device Technology

To demonstrate the ever-increasing potential of mobile devices, in general, and smart-

phones, in particular, as a powerful computing platform for the hosting of mobile

services, this section presents, in more detail, mobile device technology trends.

1.5.1 Compute

The computational power of smartphones is already significantly high (6000 DMIPS

and 1GB RAM for Samsung Galaxy S II) and is continuing to increase at an exponential

rate. For more than two decades, computer systems have followed the exponential

performance improvement trends predicted by Moore’s Law [100, 107]. As shown in

Figure 1.2, smartphone application processors have followed similar trends from 2004

to 2009. In 2011, after smartphone application processors reached the 1GHz clock

frequency, technology scaling started being leveraged to build dual-core processors

(Figure 1.3). Chip multi-processors have the potential to deliver higher performance

per watt compared to a more complex single processor of the same size [108]. By 2013,

quad-core smartphone processors are expected as well. Beyond 2013, the compute

power of computer systems, in general, and smartphones, in particular, will continue
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ARM smartphone processors
http://news.cnet.com/8301-13924_3-9865770-64.html

mm/dd/yy

year for plot CPU speed (MHz)
2004.00 400
2005.00 533
2007.20 667
2008.20 800
2008.80 833
2009.70 1000
2010.65 1200

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

#!!$" #!!(" #!!%" #!!)" #!!&" #!!*" #!'!" #!''"

!"
#
$%
&'

'(
$)*

+
,-
$

.'/0$

(++",-."
%%)",-."

&!!",-." '"/-."

'+!"01"
*!"01"

%("01"
$("01"

&++",-."

'2#"/-."

Figure 1.2: Samsung ARM roadmap for mobile device application processors
[128]. ARM processors dominate the mobile and embedded electronics
market.

2012.5 Cortex A9

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

'#!!!"

#!!(" #!!&" #!!)" #!'!" #!''" #!'#" #!'*"

!
"
#$
%&

'()*&

+,-./01"2,3,45"+"66"
7/,389:;"'<#"2=>"

?/,789:;"'2=>"

@AB90;"
%#!"C=>"

@AB90;"*2"
%#!"C=>"

=DE"F:;,-"
G#&"C=>"

@AB90;"*2+"
&**"C=>"

+,-./01"2,3,45"+"
'"2=>"

@AB90;"$"
'"2=>"

@AB90;"$+"
7/,389:;"'"2=>"

Figure 1.3: Samsung ARM processor performance trend for smartphones
from 2009 to 2013 [2, 3]. Processor performance is measured in Dhrystone
[152] Million Instructions Per Second (DMIPS).

to grow fast but possibly at a slower rate [34] primarily because of power dissipation

problems [8, 9, 124]. RAM has also been following similar exponential scaling trends.

Smartphones will have substantial compute capabilities, which are not leveraged

effectively by the current cloud service-based computing model. More intelligence can
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Table 1.2: Technology scaling trends.

Flash Other NVM technology
year ’10 ’12 ’14 ’16 ’18 ’20 ’22 ’24 ’26

tech (nm) 32 22 16 11 11 8 5 5 5
scaling factor 1 2 4 8 8 16 32 32 32

chip stack 4 4 6 6 8 8 12 12 16
cell layers 1 1 1 2 2 4 4 8 8

bits per cell 2 3 2 2 2 1 1 1 1

be pushed to the mobile devices so that the typical access to cloud servers over poor

long-range communications is avoided, when possible.

1.5.2 Storage

In order to be able to assess the potential of mobile device-resident cloud services,

it becomes critical to know what storage capacities are expected to be available on

mobile devices. We thus perform here an extensive analysis of Non Volatile Memory

(NVM) trends for the dominant mobile devices, i.e., mobile phones.

Table 1.2 shows our somewhat conservative technology scaling projections in the

NVM market through 2026. We assume that flash will dominate this market until it

runs into charge-based storage scaling issues in the 2016/2018 time frame. At this point,

we assume it will be replaced with another NVM technology more resilient to smaller

feature sizes, such as resistive (e.g., PCM [117], RRAM [67]) or magneto-resistive

memories (e.g., STT-MRAM [57]).

The first data row of Table 1.2 shows a projection of how the number of cells per

layer in NVM memory devices is expected to scale in the form of a scaling factor.

During the period in which flash is used as the NVM technology of choice, it is

projected to double in capacity every two years [40].

In 2018, flash may lose traction due to increasing challenges in storing state

(i.e., electrons) in charge-based cells. A new technology providing more stable cells
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at smaller features may at that point replace flash. Single-layer PCM is already

being productized as replacement for NOR flash in mobile devices, so it is a good

candidate. The shift from flash to another technology could cause significant disruption

in fabrication processes and would likely cause scaling to stall for one generation.

Scaling is likely to resume in subsequent years until it finally stops in 2022 when

industry is expected to hit the 5nm technology.

The second row of Table 1.2 shows chip stacking projections. Two layers are added

every four years until 2022, when the technology may be mature enough to start

making increments of four layers every four years.

The third row shows a progression of number of layers when cell stacking is

employed. Cell stacking is a technique by which devices are fabricated in multiple

layers on the same silicon base (instead of in independently fabricated chips that are

then combined, as in chip stacking) [76]. The process of taking a technology from

industrial lab prototype to initial production is typically five years1. Given that this

technology was demonstrated in 2009, this technology is likely to be adopted circa

2016 and the number of layers is likely to double every four years.

Finally, the fourth row of Table 1.2 shows the number of bits per memory cell.

This number should increase in the next few years for flash, but then start to decrease

as feature sizes get smaller, process variation increases and the average number of

electrons per cell drops. In such a setting, even small electron losses may cause cell

state to be corrupted, which in turn forces designers to reduce the number of logic

levels, and therefore bits per cell, to increase the distance between these levels and

better distinguish stored values.

Assuming the trends described above, Figure 1.4 presents various evolution scenar-

ios for NVM parts used in smartphones. Our projections start with the NVM storage
1According to Leibson’s Law, disruptive technologies take 10 years to become pervasive in the

design community. However, our focus here is not on pervasive, but on initial production for high-end
mobile device models. Furthermore, chip stacking [76], in particular, has already been demonstrated
industrially on a significant scale.
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Figure 1.4: Memory size evolution for high-end smartphones assuming the
trends shown in Table 1.2.

found in a high-end smartphone in 2010. We then apply different combinations of

scaling and other capacity-increasing techniques to make a projection of total NVM

capacity in future smartphones. Figure 1.4 shows that high-end phones may reach

1 TB of NVM as early as 2018. Considering that low-end smartphones today have

512 MB of NVM, a ratio of 64-to-1 when compared to high-end smartphones, we can

calculate that low-end phones may eventually reach 256 GB (16 GB in 2018), still a

respectable amount of storage.

As our analysis shows, the already abundant storage capacity of smartphones is

expected to continue increasing rapidly. Smartphones are thus expected to become

increasingly capable of caching mobile services and associated data in their NVM.

1.5.3 Sensors

Mobile devices, in general, and smartphones, in particular, are equipped with an ever

richer set of sensors.
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Location Sensors Smartphones are equipped with sensors that enable the device

to localize itself and thus provide location-based services. Before GPS became a

pervasive smartphone sensor, smartphones relied on cell tower and Wi-Fi base station

triangulation to localize themselves. The localization accuracy with such technologies,

however, is low and has very high variance. The accuracy is a few hundred meters

for cell tower triangulation [134] and a few tens of meters for Wi-Fi base station

triangulation [24, 134].

However, over the last couple of years, GPS has become the most pervasive

smartphone sensor offering significantly higher accuracy. Since 2000, when selective

availability (intentional satellite signal degradation) was turned off for commercial use,

GPS’s accuracy improved from 100m down to 10m. The Russian GLONASS [46] and

the Chinese BeiDou (COMPASS) [10] global navigation satellite systems have similar

performance to the US GPS. With Galileo [43], the European counterpart of these

systems, the accuracy will be further improved and reduced down to within 1m. For a

fee, Galileo will be able to offer centimeter-level accuracy for civilian purposes as well.

Galileo will start becoming operational in 2012 when at least four satellites will be in

orbit. Galileo’s coverage will continue to improve till 2018 when 30 satellites will have

been launched in total.

While GPS offers accuracy that is adequate for most applications, it also has several

shortcomings. First GPS [73] has limited availability. GPS requires line of sight with

at least four satellites in order to acquire a location lock. As a result, GPS cannot

work indoors or even in urban canyons. Second, GPS is a major energy hog for mobile

devices [31]. When GPS is not available or when power conservation is necessary,

localization based on wireless signal triangulation is used instead in commercial

systems. Researchers have also proposed several other alternative approaches for

indoor positioning based on acoustic fingerprints [141], geo-magnetism [25] and others.

Such approaches can robustly (92% [141]) determine in which room users are located
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or their actual location within 1-2 meters accuracy [25]. RFID-based localization has

also the potential to provide localization with sub-meter accuracy [130] but requires a

dense deployment of RFID tags.

Lately, some high-end smartphones (e.g., iPhone 3GS) are equipped with a compass

sensor as well. Furthermore, altimeter (barometer sensors) may be added soon to

smartphones for measuring elevation. Elevation information could be used, for example,

to determine on which floor of a building the user currently is.

Inertial Sensors In 2007, Apple equipped the iPhone with an accelerometer to

switch its display automatically from portrait to landscape orientation. Ever since,

the 3-axis accelerometer has been used to enable a rich set of applications ranging

from games to transit tracking [144]. More recently, gyroscopes that can determine

the orientation of the device (yaw, roll and pitch angles) have started to be integrated

into smartphones as well. When measurements from these two sensors are fused, the

mobile device can more robustly and accurately detect changes in the device movement

and orientation.

Audio Sensors Smartphones typically have one or more microphones. Besides

the original goal of enabling phone calls, smartphone microphones have been used

to estimate traffic conditions (detecting and localizing honking) [99], mobile phone

pairing [114] and for other purposes.

Visual Sensors Smartphones are equipped with powerful digital cameras. A back-

facing camera is a standard feature for all smartphones enabling the capture of

photos and videos. Recently, some smartphones (e.g., iPhone 4) started featuring a

front-facing camera as well, in order to enable video calls.

The quality and capabilities of smartphone cameras have been increasing fast; the

size of and amount of pixels in digital smartphone cameras are strongly linked to
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Date Date model camera MP
iPhone

2007.56 29-Jun-07 iPhone 2
2008.625 11-Jul-08 iPhone 3G 2
2009.55 19-Jun-09 iPhone 3GS 3
2010.57 24-Jun-10 iPhone 4 5
2011.83 14-Oct-11 iPhone 4S 8

Nokia
2004.916 1-Nov-04 6630 1.3
2005.417 1-May-05 6680 1.3
2005.92 2-Nov-05 N92 2

2006.416 26-Apr-06 N93 3.2
2006.83 26-Sep-06 N94 5
2007.75 29-Aug-07 N95 5
2008.25 28-Feb-08 N96 5

2008.916 2-Dec-08 N97 5
2009.21 17-Feb-09 N86 8
2010.33 1-Apr-10 N8 12

2008.89 HTC Dream
2010.5 1-Jun-10 Samsung Galaxy S 5

2011.42 1-May-11 Samsung Galaxy S II 8
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Figure 1.5: Camera resolution roadmap for iPhone and Nokia smartphones.
The resolution of smartphone cameras has been increasing fast.

Moore’s Law. As shown in Figure 1.5, the camera resolution for iPhone and Nokia

devices has been increasing at an exponential rate. Nokia has been traditionally

featuring the most high-end cameras for its smartphones. At the same time, Samsung

has already announced CMOS camera sensors with resolution as high as 16MP [129].

The rate of improvement for CMOS cameras is expected to slow down though,

unless new camera technologies are invented [22]. Because of mobile device size

constraints, the size of the image sensor has to be relatively small. Therefore, the

camera analysis is typically improved by leveraging Dennard transistor scaling and

making pixels smaller. In order to decrease the size of the pixel proportionately to

Dennard scaling and fit more of them in a given sensor area, not only the transistors

but the photosensitive area of the pixel needs to get decreased proportionately as

well. However, the smaller the photosensitive area of a pixel, the lower its ability to

capture light and thus the lower the quality of the image. There is hence a tradeoff

between image resolution and sensitivity. This tradeoff limits the benefits of Dennard

scaling. Nevertheless, smartphone cameras are already powerful enough to support

most popular applications.
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Other Existing Sensors Some smartphones have an ambient light sensor to adjust

display brightness and thus save battery power. Furthermore, proximity sensors

have been introduced into smartphones as well. In the iPhone, the proximity sensor

deactivates parts of the hardware (e.g., touch screen and display) when the device

is placed next to the user’s head in order to conserve battery power and prevent

accidental inputs. So far, these sensors have not been widely leveraged to enable

other novel functionality and services. In 2010, Nokia introduced a radar sensor [106]

into one of its smartphones that can detect objects ahead and report their speed and

direction of movement. The radar sensor has not become popular either yet.

Potential Future Sensors As mentioned earlier, future smartphones may feature

barometer sensors. Temperature, humidity, gas and other environmental sensors may

also be integrated in smartphones as well. Furthermore, pervasive smartphones have

recently started being used as healthcare assistants. As a result, healthcare-related

sensors (e.g., heart monitor, respiratory sensor) may also become commonplace in

the future. Several other types of sensors that are currently used only by scientists

may eventually be added in commodity smartphones, if a popular application for

them is conceived. In short, smartphones will be equipped with an increasing set

of sophisticated sensors that can enable new services. Especially, when multiple

smartphones collaborate, the aggregate sensing capacity and service provision potential

begin to look extremely promising.

1.5.4 Wireless Communication Interfaces

There is a very rich variety of wireless network technologies. Three major cate-

gories of wireless communication interfaces exist for mobile devices though: Wi-Fi

(802.11a/b/g/n), cellular (2G, 3G) and Bluetooth (802.15.1). For each category,

several different protocols and corresponding interfaces exist.
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As Table 1.3 shows, Wi-Fi, cellular and Bluetooth interfaces exhibit very different

performance. Furthermore, the performance of these interfaces exhibits very high

variance. Wireless communication channels are a shared resource. Therefore, the

performance of wireless networks varies significantly depending on the load created

by all the users sharing the same channel. Cellular networks, in particular, are often

heavily loaded and the performance experienced by individual users is, on average,

at least an order of magnitude lower compared to the quoted numbers [58]. As a

result, cellular connections often result in poor user experience and Wi-Fi connections

are preferred instead, when available. As shown in Section 2.6.1, querying a search

engine via 802.11g is 2.4× faster and 2.2× more power-efficient compared to using 3G.

Compared to EDGE, 802.11g is 3.8× faster and 3.9× more power-efficient.

The three aforementioned wireless interface categories can enable different modes

of communication. Cellular interfaces can be used only for infrastructure mode

connections to the Internet through the cell towers. On the contrary, Bluetooth is

used for direct (ad hoc) communication between devices. Wi-Fi can be used both in

infrastructure and ad hoc mode.

Smartphones and some other high-end mobile devices typically feature all three

interface categories: cellular, Wi-Fi and Bluetooth. They do not support all the stan-

dards of these three categories though. Smartphones typically support 802.11b/g and

recently some models (e.g., iPhone 4S) have started featuring 802.11n as well. Because

of the smaller coverage of 3G networks, smartphones feature not only 3G but also

older 2G cellular interfaces. Two Bluetooth-enabled devices can always communicate

with each other (at the rate of the slower one), as all Bluetooth versions are backwards

compatible. In the near future, vehicles will most likely be featuring 802.11p interfaces

[61]. 802.11p is a new standard in the Wi-Fi family that will enable high-rate and low-

latency short-range vehicle-to-vehicle and vehicle-to-infrastructure communications.
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802.11p will be operating over the Dedicated Short-Range Communications (DSRC)

channels.

The performance of proposed standards for cellular, Wi-Fi and Bluetooth tech-

nologies has been improving fast over the last decade. Performance improvements

are particularly critical for cellular technologies as cellular networks are already often

getting overloaded leading to poor performance. LTE is expected to double the spectral

efficiency compared to deployed 3G technologies (e.g., HSPA, EV-DO) by leveraging

Multiple-Input Multiple Output (MIMO) technology. However, cellular technologies

are reaching the Shannon bound, the theoretical limit for spectral efficiency for a

specific signal-to-noise ratio [127]. Directive antennas and smaller cells that allow for

better spatial reuse [139] may be leveraged more aggressively in the future to further

increase the available capacity.

Despite these technological improvements, the demand for cellular bandwidth is still

expected to grow significantly faster than the available capacity. New mobile service

architectures are necessary that will ease or completely remove the strong dependence

of mobile services on cellular links to Internet servers. Short-range, phone-to-phone

communications over WiFi, Bluetooth or the emerging Near Field Communication

(NFC) should be leveraged instead to support mobile services.

1.5.5 Battery

Battery power is often the most constrained resource for mobile devices. Battery

technology has been evolving very slowly compared to other mobile device components,

e.g., processor. However, according to Koomey’s Law [78], the energy efficiency of

computers has been doubling every about one and a half years. This trend has been

followed over the last six decades and is expected to continue. This means that at

a fixed computing load, the amount of power consumed by a mobile device will be

getting reduced by a factor of two about every 18 months. Therefore, despite the small

21



improvements in battery technology, the capabilities of mobile devices will continue to

increase at an exponential rate.

1.6 Thesis Contributions

Leveraging the ever-increasing capabilities of mobile devices, this thesis proposes

novel middleware and architectures to empower mobile devices as the mobile service

providers. Two different schemes are proposed and evaluated for the two different types

of services: 1) the Pocket Cloudlets architecture [81] for traditional non-geo-locality

services and 2) the Region-Resident Services (RegReS) middleware [84] for emerging

geo-locality services. The potential of the proposed mobile service architectures is

illustrated by describing a rich set of services that each one of them can support.

A service is prototyped and evaluated for each of the two proposed architectures.

For the Pocket Cloudlets architecture, we prototyped a mobile search service termed

PocketSearch. For the RegReS middleware, we prototyped a Parking Availability

Service (PAS). In addition, in order to demonstrate the full potential of RegReS-

enabled collaborative mobile-device based computing platforms, we also prototyped

SignalGuru [85], a novel traffic signal schedule advisory service.

1.6.1 Pocket Cloudlets Architecture

For non-geo-locality cloud services that operate on global data (e.g., search engine,

etc.), this thesis proposes the Pocket Cloudlets architecture [81]. This architecture is a

client-side caching scheme that leverages personal user and collaboratively-generated

community access patterns to selectively replicate parts of the cloud service locally on

the mobile device. Pocket cloudlets are also adaptively updated by detecting emerging

popular service data items and prefetching them on the mobile device. Selective

replication is critical since the global data (e.g., search index, world wide web, etc.)
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are normally prohibitively large. The device-resident pocket cloudlet intercepts the

requests to the cloud service and provides locally cached results, if possible. In this

way, pocket cloudlets limit the use of slow and costly long-range communications.

The Pocket Cloudlets architecture is motivated by mobile device technology trends.

Radio and battery technologies will improve over time, but are still expected to be the

bottlenecks in future systems. However, as our analysis shows, NVMs may continue

experiencing significant and steady improvements in density for at least ten more

years (Section 1.5.2). The Pocket Cloudlets architecture leverages the abundance in

the memory capacity of mobile devices to mitigate latency and energy issues when

accessing cloud services.

The thesis briefly describes five services that could be supported on the Pocket

Cloudlets architecture. As a showcase, we present in detail the design, implementation

and evaluation of PocketSearch, a web search pocket cloudlet. We perform mobile

search characterization to guide the design of PocketSearch and evaluate it with 200

million mobile queries from the search logs of m.bing.com. We show that PocketSearch

can serve, on average, 66% of the web search queries submitted by an individual user

without having to use the slow 3G link, leading, on average, to a 2.7× service access

speedup. The example of PocketSearch demonstrates the impact of the proposed

architecture.

Finally, based on our experience with PocketSearch, we provide additional insights

and guidelines on how future pocket cloudlets should be organized, from both an

architectural and operating system perspective.

1.6.2 RegReS: Region-Resident Services Middleware

For geo-locality services, i.e., services that operate on data that are both generated

and consumed locally (within a specified region), this thesis proposes the RegReS

middleware [84]. This middleware, leveraging the geo-locality property of such ser-
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vices, enables their hosting on confederations of regional mobile devices in a fully

infrastructureless fashion. Mobile devices, termed service carriers, collaborate using

their short-range communications to maintain the services within a defined geographic

region and for a defined service lifetime.

Although mobile devices are becoming increasingly powerful, their resources (com-

putation, memory, storage, communication, battery energy) are still often constrained

for certain types of resource-intensive services (e.g., SignalGuru). Mobile devices

should thus be used judiciously when supporting such services. Unlike proposed

approaches for geo-locality services, RegReS allows services to specify their desired

critical density of service carriers. The critical density of carriers is service-specific and

ensures that the service neither runs low on capacity nor wastes more resources than

necessary. The RegReS middleware, which runs on the mobile devices, ensures that

this target carrier density is maintained in a fully-distributed fashion. RegReS uses

a collaborative estimation scheme to track the existing carrier density for a service.

RegReS then employs spawn policies and carrier selection criteria to decide when and

which regional mobile devices to spawn as new service carriers.

Furthermore, unlike other proposed static estimation schemes, RegReS adapts

the parameters of its estimation scheme to system dynamics. As our results show,

adaptation is critical for maintaining a stable and accurate density of service carriers

in highly volatile systems like vehicular ad hoc networks. In such networks, node

mobility (e.g., average speed) varies a lot across the day depending on the prevailing

traffic and other road conditions.

RegReS is able to maintain a stable and accurate density of service carriers

across a wide range of configurations. Results from the ORBIT testbed [111], using

synthetic and real bus mobility traces, show that RegReS adapts to different system

configurations, preserving the desired service density with less than 16% mean absolute
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error. By maintaining the requested target carrier density accurately, RegReS can

form an important foundation for low- or even zero-infrastructure mobile services.

1.6.3 Novel RegReS-enabled Geo-locality Services: Signal-

Guru

The RegReS middleware can fully support a rich set of proposed services whose data

are both sensed and consumed locally. Examples of such geo-locality services include

traffic advisory [99], road conditions [33], parking spot availability [19, 98], air or

noise pollution [116] services. Our RegReS-based PAS sniffs broadcast reports to

learn about the release of parking spots and subsequently provides this information to

vehicles in the vicinity that are looking for a free spot.

To demonstrate the full potential of RegReS-enabled computing platforms that

are based on collaborating mobile devices, we focus on the challenging and compute-

intensive class of camera-based services. To enable grassroots camera-based services, we

propose a novel sensing platform that is composed of windshield-mounted smartphones

and their cameras. As the vehicles move, smartphones opportunistically capture video

frames with their cameras and process them to detect target objects. We envision that

many already proposed or new services can be supported by such a grassroots sensing

platform. These services include but are not limited to a free parking spot availability

service, bus localization and arrival time service, free taxi discovery service, cheap gas

advisory service and SignalGuru [85].

Our proposed SignalGuru is a novel traffic signal schedule advisory service. Sig-

nalGuru leverages the cameras of windshield-mounted smartphones to detect traffic

signals and their current status, merge the locally detected information with received

information and ultimately predict the traffic signals future schedule. The traffic signal

schedule that SignalGuru predicts can then be fed into several envisioned applications

to improve fuel efficiency, vehicle flow and road safety. Our work on SignalGuru makes
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several other contributions as well. We propose a lightweight iterative traffic signal

detection algorithm and a two-stage filter to compensate for this lightweight yet noisy

detection scheme. Furthermore, we propose schemes to predict the schedule of both

pre-timed and traffic-adaptive traffic signals.

Results from two deployments of SignalGuru, using iPhones in cars in Cambridge

(MA, USA) and Singapore, show that traffic signal schedules can be predicted accu-

rately thanks to collaboration and adaptation. On average, SignalGuru comes within

0.66s for pre-timed traffic signals and within 2.45s for traffic-adaptive traffic signals.

Without collaboration the prediction error for traffic-adaptive traffic signals would be

4.5× higher (11.03s). Furthermore, frequent enough adaptation (retraining) of the

Support Vector Regression (SVR) traffic signal models, reduces the prediction error

by 25%. Feeding SignalGuru’s predicted traffic schedule to our GLOSA application,

our vehicle fuel consumption measurements show savings of 20.3%, on average.

Our work on SignalGuru demonstrates that even challenging camera-based services

can be effectively supported on confederations of mobile devices without long-range

communications to cloud servers. It also demonstrates that such grassroots services

can deliver significant benefits, both monetary and environmental. We believe that

the effectiveness of SignalGuru will motivate further research in services that RegReS,

in general, and our proposed novel sensing platform, in particular, can enable.

1.7 Thesis Outline

The following chapters describe the contributions of this thesis in detail. Chapter 2

presents the Pocket Cloudlets architecture for traditional non-geo-locality services.

Chapter 3 describes the design of the RegReS middleware for emerging geo-locality

services. The potential of collaborative mobile device-based computing platforms that

are enabled by middleware like RegReS are next illustrated in Chapter 4 by describing
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five geo-locality services that such platforms can support and presenting in detail the

design and evaluation of SignalGuru. Finally, Chapter 5 offers the conclusions of this

thesis and provides pointers for future research.
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Chapter 2

Pocket Cloudlets Architecture for

Non-geo-locality Services

This chapter presents the Pocket Cloudlets architecture that is targeted at non-geo-

locality cloud services and helps reduce their need for long-range communications.

The proposed architecture is a cloud service cache architecture that resides on the

mobile device’s non-volatile memory and, when possible, services requests locally on

the device. This architecture utilizes both personal user and collaboratively-generated

community access models to maximize its hit rate and, subsequently, reduce overall

service latency and energy consumption. The effectiveness of the proposed architecture

is explored and demonstrated with PocketSearch, a web search pocket cloudlet. We

evaluate the improvement in user experience (bandwidth and latency reductions) that

PocketSearch can deliver and the resources (memory, NVM) needed. The applicability

of the Pocket Cloudlets architecture for more mobile services is also examined. Finally,

this chapter provides additional architectural insights regarding the operation of one

or more pocket cloudlets on a mobile device.
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2.1 Introduction

The availability of Internet access on mobile devices, such as phones and personal

media players, has allowed mobile users to access valuable information through a

rich set of cloud services. Thanks to search engine services, mobile users can locate

and access any type of information that resides within the world wide web. Mobile

users can also access many special types of information (e.g., restaurant reviews)

via dedicated cloud service interfaces. The ever-increasing set of offered services has

spurred a growing interest in accessing these services even while on the go.

However, the traditional cloud service architecture leads to poor user experience

for mobile users. In the desktop domain, services are accessed over fast and stable

connections. In contrast, in the mobile domain, services are accessed over slow, power-

hungry, costly and less predictable long-range cellular communications. For example,

while the typical response time for a web search service on a desktop machine is a

few hundred milliseconds, on a 3G-connected mobile device, it is at least an order of

magnitude higher (3 to 10 seconds depending on location, device and operator used).

When the 3G radio is not connected or only EDGE connectivity is available, this

response time may be doubled or even tripled. Besides being slow, power-hungry and

costly, long-range cellular communications are also becoming an increasingly scarce

resource.

On the other hand, storage on mobile devices is becoming increasingly abundant.

Phones and personal music players currently support up to 64 GB of flash memory and

future flash technologies promise much higher capacities. The increasingly available

memory resources on these devices can transform the way mobile cloud services are

structured. As more and more information can be stored on mobile devices, specific

parts of or even full cloud services could be transferred to the actual mobile devices,

transforming them into pocket cloudlets.
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Pocket cloudlets could drastically improve the mobile user experience in three

major ways. First, users can instantly get access to the information they are looking for.

When local results are available, the cost, latency and power bottleneck introduced

by the cellular radio is eliminated. Furthermore, by serving user requests on the

actual device, pocket cloudlets can mitigate pressure on cellular networks, which is

expected to be a scarce resource as mobile Internet grows. Second, since most of

the interactions between the user and the service take place on the mobile device, it

is easier to personalize the service according to the behavior and usage patterns of

individual users. Third, since the service resides on the phone, all the personalization

information could also be stored on the phone and possibly protect the privacy of

individual users.

Pocket cloudlets can thus enable a fast and personalized mobile user experience.

The proposed Pocket Cloudlets architecture for non-geo-locality mobile services takes

advantage of the increasing Non-Volatile Memory (NVM) sizes to alleviate shortcom-

ings of cellular radios and above all the latency and power bottlenecks. For instance, in

the case of a search engine, a large part of the web index, ad index and local business

index can be stored on the phone’s NVM enabling users to instantly access search

results locally without having to use the cloud. In essence, a mini search engine could

be running on the phone providing real-time search results to the mobile user. In

another setting, the actual web content could also be cached on the mobile device to

provide an instant browsing experience. Web content that might be of interest to the

user could be automatically downloaded to the user’s phone overnight and become

available during the course of the day.

The structure of this chapter is as follows. First, Section 2.2 briefly describes

different mobile services that could be potentially architected as pocket cloudlets.

Then Section 2.3 proposes the pocket cloudlet architecture that leverages both personal

user and community models to selectively cache cloud service data in mobile device
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NVM. In Section 2.4, we analyze 200 million queries to understand how mobile users

search on their phones, and then utilize the results of this analysis to guide the

design of PocketSearch (Section 2.5), a pocket cloudlet that replicates a search and

advertisement engine on an actual phone. Next in Section 2.6, using a prototype

implementation and real search query streams extracted from mobile search logs of

m.bing.com, we show that PocketSearch is able to successfully serve, on average, 66%

of all web search queries submitted by an individual user. The benefits are twofold.

From the user perspective, two-thirds of the queries can be answered within 400ms,

which is 16 times faster when compared to querying through the 3G link. From the

search engine perspective, two-thirds of the query load can be eliminated resulting in

significant cost savings and easier query load balancing during peak times. Finally,

Section 2.7 discusses how future pocket cloudlets should be organized, from both an

architectural and an operating system perspective and Section 2.8 discusses related

work.

2.2 Potential Cached Services

NVM, in contrast to cellular bandwidth and battery power, is expected to become

increasingly abundant in mobile devices. As described in Section 1.5.2, mobile phones

are expected to soon reach 256 GB of NVM. It thus becomes very appealing to

host cloud services directly on mobile devices, leveraging their fast increasing storage

resources.

Dedicating only 10% of a 256 GB NVM to caching services results in 25.6 GB

of available storage capacity. This storage could be used to augment various cloud

services with a pocket cloudlets architecture, reducing the need for costly, slow and

power-hungry long-range cellular communications. Table 2.1 shows the number of

data items (e.g., search result pages, web sites, etc.) that can be stored in 25.6 GB
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Table 2.1: Number of data items that can be stored in 25.6GB (10% of
the projected NVM size available on low-end smartphones) for different
pocket cloudlets.

Pocket Cloudlet Single Item Number of Items
Web Search 100 KB (search result page) ≈ 270,000
Mobile Ads 5 KB (ad banner) ≈ 5,500,000

Yellow Business 5 KB (map tile with business info) ≈ 5,500,000
Web Content 1.5 MB (www.cnn.com) ≈ 17,500
Mapping 5 KB (128×128 pixels map tile) ≈ 5,500,000

of space for various pocket cloudlets. A low-end smartphone is projected to be able

to store more than 5 million map tiles or 17000 web sites. To put these numbers in

perspective, our search log analysis indicated that more than 90% of mobile users visit

fewer than 1000 URLs over a period of several months, which is 17 times fewer than

the number of web sites that we can actually store on the phone. For the mapping

service, assuming that each map tile covers 300×300m2 of actual earth surface, 5.5

million map tiles can cover the area of a whole state in the United States. As a result,

the projected memory resources for smartphones could easily sustain the web browsing

and mapping needs of a typical mobile user.

2.3 Pocket Cloudlet Architecture

Enabling mobile devices to efficiently host cloud services poses various challenges.

First, the amount of data to be stored locally on the device needs to be determined

for each cloud service. Even though the analysis in Section 1.5.2 shows that memory

resources on mobile devices will be abundant in the next decade, the amount of data

available on the Internet and across the different cloud services will normally far

exceed the available memory resources on a typical smartphone. Second, a mechanism

to manage the locally stored cloud data is required, as this data might change over

time (e.g., web content changes over time). Third, a storage architecture for efficiently
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Figure 2.1: The envisioned architectural support required to transform mo-
bile devices into pocket cloudlets.

storing and accessing this large amount of data is needed. Mobile users need to be

able to quickly search and access data across services while still having enough space

to store their personal data. Figure 2.1 shows the infrastructure required to transform

mobile devices into pocket cloudlets.

2.3.1 Collaborative Data Selection

At a higher level, the data stored locally on the mobile device are selected based on

both personal and community access models. The access patterns of the individual

user to a specific service (e.g., web search) are recorded and used to construct a

personal model (e.g., favorite search topics). At the same time, users collaborate by

contributing their locally constructed personal models. The personal models across
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users are combined together into a community model that identifies the most popular

parts of the cloud service data across all users. Both personal and community models

are then used to identify the most frequently accessed parts of the cloud service data

that is or might be of interest to the individual user.

2.3.2 Adaptation: Data Management

The Pocket Cloudlets architecture is an adaptive caching scheme. The locally cached

cloud service data needs to get updated dynamically. Updates occur when the device

has access to power resources and high bandwidth links (e.g., charging and connected

to Wi-Fi or tethered to a desktop computer).

Periodic updates (e.g., nightly, weekly or monthly) based on the charging state of

the device are appealing, but can only be effective for relatively static data. That is,

data that is not very frequently updated. For instance, the search index or the map

tiles used for search and mapping services are examples of static data that could be

updated periodically, and only when the mobile device is charging, without hurting

the quality of the cloud service.

However, not all cached data tend to be that static. For instance, web content,

such as news and stock prices, is dynamic in nature and tends to be accessed by

individual users several times within a day. For this type of pocket cloudlet, real-time

updates over the radio link are required to guarantee freshness of the cached data.

Performing bulk updates over power-hungry and bandwidth-limited radio links

is inefficient, if not impossible. Luckily, it turns out that the amount of dynamic

data that is repeatedly accessed by mobile users tends to be small. For example, our

analysis of 200 million mobile search queries submitted by hundreds of thousands of

users (Section 2.4) showed that 70% of web visits tend to be revisits to less than a few

tens of web pages for more than 50% of the users. As a result, instead of enforcing

inefficient bulk updates over the radio link, only the small set of most frequently
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visited data (identified by the access patterns of the individual user) is updated in

real-time.

2.3.3 Architectural Implications

At a lower level, each cloud service owns its own storage space on the mobile device

and uses it to store the necessary data. For instance, the storage can mirror web

pages in the case of the web content service, and map tile snapshots and local business

information in the case of mapping and navigation services. Since the amount of data

required by these services is expected to be large and should always be available on

the device even after a power down, bulk non-volatile storage, such as NAND flash, is

a suitable memory technology. Besides storing the actual data on the mobile device’s

NVM, each cloud service also maintains an index of its data in fast volatile memory

(DRAM). The index enables instant retrieval of the required data from bulk storage.

Given the characteristics of current memory technologies, the main memory of the

phone (i.e., DRAM) is able to provide the necessary performance and density for

storing the different indexes.

As new memory technologies, such as PCM, mature, they could be used to store

the index as well. The described two-tier memory structure would then evolve into a

three-tier structure, as shown in Figure 2.1. PCM could become the intermediate tier

by filling the performance and storage density gap between DRAM and NAND flash.

In practice, PCM could be seen as fast bulk storage when compared to NAND flash,

making it an ideal technology for storing the data indexes. While slower than DRAM,

PCM has the advantage of being non-volatile and significantly faster than NAND flash.

Being able to store data indexes in PCM eliminates the need to commit to and load

the index from NAND flash after each power cycle of the mobile device. Given that

the data required by the cloud services might be tens or even hundreds of gigabytes,

the size of the data indexes can reach gigabytes, making its transfer between flash
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and main memory extremely time-consuming. By introducing a PCM-based layer, all

data indexes could become instantly available on the device at boot time, offering

a much faster user experience. At the same time, the DRAM tier could be used to

cache the most frequently accessed parts of the data indexes in order to provide the

fastest user experience when possible.

Figure 2.1 only shows the high-level architectural requirements to enable mobile

cached cloud services. In practice, however, several lower-level challenges and design

tradeoffs can arise. In the next several sections, we present these challenges and

tradeoffs for an example cloud service that focuses on mobile search and advertisement.

2.4 Cacheability of Mobile Search

Before designing and implementing a pocket cloudlet for a cloud service, it is important

to study its cacheability. For instance, the real impact of a search pocket cloudlet

depends on the fraction of the query volume that can be successfully served locally on

the device. To answer this question, we analyzed 200 million queries, submitted to

m.bing.com over a period of several consecutive months in 2009. The query volume

consisted of web search queries submitted from mobile devices, such as phones and

personal media players. Every entry in the search logs we analyze contains the raw

query string that was submitted by the mobile user as well as the search result that

was selected as a result of the submitted query. No personal information, such as

location, is included in the logs.

2.4.1 The Mobile Community Effect

First, we examine the community of mobile users as a whole to discover caching

opportunities across users. From the web search logs, we extract the most popular

queries submitted and the most popular search results clicked by the mobile users.
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Figures 2.2(a) and (b) show the cumulative query and search result volume as a

function of the number of most popular queries and search results, respectively. When

looking across all data, it turns out that the 6000 most popular queries and the 4000

most popular search results are responsible for approximately 60% of the query and

search result volumes, respectively. In other words, there is a small set of queries and

search results that is popular across all mobile users. This suggests that if we store

these 6000 queries and 4000 search results locally on the phone, we could theoretically

serve 60% of the overall queries submitted by mobile users without having to use the

radio link.

Note that these 4000 search results might not always point to static web pages.

However, while some web content might be highly dynamic, the search results and

queries that point to it can be relatively static. For instance, the CNN web page

(www.cnn.com) is updated every minute and sometimes even more frequently. However,

the way mobile users reach this dynamic web page is relatively static (e.g., search for

"cnn" or "news" and then click on the static search result that points to the CNN

web page).

Similar popularity trends exist for desktop queries. However, mobile queries are

significantly more concentrated than desktop queries. For instance, the first 6000

queries represent 60% of the query volume in the mobile domain, but less than 20%

of the query volume in the desktop domain [72].

We further divide the queries in two different categories, navigational1 (e.g.,

"youtube" or "facebook") and non-navigational (e.g., "michael jackson"), and we

study the same trends for each category. As Figure 2.2 shows, both query types

follow the same trends but navigational queries are significantly more concentrated

compared to non-navigational queries. For instance, the first 5000 navigational queries

are responsible for 90% of the navigational query volume while the same number of
1A query is classified as navigational when the actual query string is a substring of the clicked

URL (e.g., "youtube" and www.youtube.com)
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(a)

(b)

Figure 2.2: CDF plots of the (a) query volume and (b) clicked search result
volume.
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non-navigational queries accounts for less than 30% of the non-navigational query

volume.

Another interesting observation comes from comparing the results between Figures

2.2(a) and (b). To achieve a cumulative volume of 60%, 50% more queries are required

compared to the number of search results (6000 queries vs. 4000 search results). The

search logs show that users search for the same web page in many different ways. For

instance, mobile users often either misspell their queries because of the small keyboards

they have to interact with (e.g., "yotube" instead of "youtube") or purposely change

the query term to reduce typed characters (e.g., "boa" instead of "bank of america").

However, even though a misspelled or altered query is submitted, the search engine

successfully provides the correct search result and thus a successful click-through is

recorded. As a result, a popular webpage is, in general, reached through multiple

search queries.

Figures 2.2(a) and (b) also show the same information when considering the queries

and search results that were submitted by feature phone (low-end mobile devices with

limited browsers and Internet capabilities) and smartphone users in isolation. Even

though the exact same observations hold in both cases, queries and search results that

are accessed over feature phones are, in general, more concentrated when compared to

smartphones. This is an artifact of the limited user interfaces found on feature phones

that make web access a challenging task.

2.4.2 The Individual Mobile User Effect

Next, we examine personal query traces to discover caching opportunities within the

search habits of individual users. In particular, we study how often individual users

repeat queries. We call a query a repeated query only if the user submits the same

query and clicks on the exact same search result. Figure 2.3 shows the percentage

of individual mobile users as a function of the probability of submitting a new query
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Figure 2.3: CDF plot of the repeatability of mobile search queries across
individual users over a 1-month period.

within a month. Approximately 50% of mobile users will submit a new query at most

30% of the time. Thus, at least 70% of the queries submitted by half of the mobile

users are repeated queries. Figure 2.3 also shows this trend for both navigational and

non-navigational queries.

Consequently, knowing what the user searched for in the past provides a very good

indication of what the user will search for in the future. Again, this trend of repeating

queries is not unique to mobile queries. Desktop users also tend to repeat queries, but

not as frequently as mobile users. Recent studies have shown that desktop users will

repeat queries on average 40% of the time [142] as opposed to 56.5% for mobile users.

2.5 PocketSearch Architecture

Given the mobile search trends that the analysis of the web search logs highlighted,

we designed and implemented PocketSearch, a mobile search pocket cloudlet that lives
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on the phone and is able to answer queries locally without having to use long-range

communications (3G link)2. The goal of the PocketSearch architecture is to capture the

cacheability of mobile search as demonstrated in Section 2.4, and to be computationally

tractable so that it can efficiently run on a mobile device. PocketSearch accomplishes

both of these goals making its underlying architecture a template for other pocket

cloudlet services.

Note that PocketSearch is not aiming to replace the actual search engine. Instead,

its goal is to augment the search engine and help avoid the limitations of long-range

communications in a way that is transparent to the user. Above all, PocketSearch

helps provide a much faster user experience. As shown in Figure 2.4, while a query

for the term "ringtones" took as long as 6445ms over 3G, it took only 377ms for

PocketSearch.

PocketSearch can also make the user experience richer. Most of the high-end

smartphones today can automatically provide query suggestions to the user almost

instantly and as the user is typing his query. PocketSearch’s ability to retrieve search

results fast can make this experience richer by enabling the display of actual search

results along with auto-suggest query terms in the auto-suggest box in real-time. This

is shown in Figure 2.5 for our local search/ads prototype. If users are not interested

in any of these search results, they can access the latest set of search results through

the 3G radio by selecting the query term provided by auto-suggest or by entering the

full query term on their own.

As shown in Figure 2.6, PocketSearch consists of two discrete but strongly in-

terrelated components; the community and the personalization components. The

community part of the cache is responsible for storing the small set of queries and

search results that are popular across all mobile users. This information is automat-
2PocketSearch only stores search results and not the actual web content that these results point

to. Another cloudlet responsible for web content caching/pre-fetching (i.e., PocketWeb) running
along with PocketSearch could be used to serve the actual web content.
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Figure 2.4: The GUI of the PocketSearch prototype for web search. In this
example, cached search results for the query "ringtones" were displayed
in 377ms. The same query, when submitted over 3G, took 6445ms to
complete.
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Figure 2.5: The GUI of the PocketSearch prototype for local search/ads.
Local search results/ads are instantly displayed in the auto-suggest box as
the user types the query.

ically extracted from the search logs. The search logs come from two sources: the

actual search logs that search engines maintain and the personal user access patterns

(logs) that users collaboratively contribute. Note that the latter is necessary since

queries that are served locally by the pocket cloudlet do not appear in the former.

The community part of the cache is updated overnight every time the mobile device is
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Figure 2.6: Overview of the PocketSearch cloudlet.

recharging, making sure that the latest popular information is available on the mobile

device. The community part serves as a warm start for the cache and enables Pocket-

Search to instantly provide search results without requiring any previous knowledge

of the user.

The personalization part of the cache monitors the queries entered as well as the

search results clicked by the user and adapts accordingly, performing two discrete tasks.

First, it expands the cache to include all those queries and search results accessed

by the user that did not initially exist in the community part of the cache. In that

way, the cache can take advantage of the repeatability of the queries submitted by the

mobile users to serve as many queries as possible locally on the mobile device. Second,

it collects information about user clicks, such as when and how many times the user

clicks on a search result after a query is submitted, to customize ranking of search

results to user’s click history.

When a query is submitted, PocketSearch will first perform a lookup in the cache

to find out if there are locally-available search results for the given query. In the case

of a cache hit, the search results are fetched from the local storage, ranked based on

the past user access patterns recorded by the personalization part of the cache, and
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immediately displayed to the user. In the case of a cache miss, the query is submitted

to the search engine over the 3G radio link.

Realizing the architecture shown in Figure 2.6 on an actual mobile device poses

several challenges:

Content Generation: A methodology is required to decide which and how many

queries and search results should be included in the cache.

Storage Architecture: An efficient way to store and quickly retrieve the search

results on the mobile device is needed. Memory overhead should be minimized to

prevent performance degradation on the device and provide ample storage space for

user’s personal files. At the same time, PocketSearch should be able to quickly locate

and retrieve the search results to minimize user response time.

Personalized Ranking: The user’s search patterns provide important informa-

tion about the individual user’s interests. PocketSearch should record and leverage

this information over time to adapt its cache and personalize the search experience.

Cache Management: A scalable mechanism for adaptively updating the cache

contents is required. Having available the most up-to-date set of popular queries and

search results on the phone is necessary for maximizing the number of queries that

can be served by PocketSearch.

2.5.1 Cache Content Generation

The search results stored in the cache are extracted directly from the combined mobile

search logs (search engine logs, contributed personal user logs). The goal of this

process is to identify the most popular queries and search results that are of interest

to the mobile community.

A set of triplets in the form <query, search result, volume> are extracted from

the search logs and sorted based on volume (Table 2.2). The term query corresponds

to the query string submitted to the search engine, the term search result corresponds
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Table 2.2: A list of query-search result pairs sorted by their volume is
generated by processing the mobile web search logs over a time window
(e.g., a month). The volume numbers used in this table are hypothetical.

Query Search Result Volume
michael jackson www.imdb.com/name/nm0001391/bio 106

movies www.fandango.com 95 ∗ 104
michael jackson www.azlyrics.com/j/jackson.html 90 ∗ 104

ringtones www.myxer.com 50 ∗ 104
pof www.plentyoffish.com 20 ∗ 104
... ... ...

Total Volume 50 ∗ 105

to the search result that was selected after entering the query, and the term volume

represents the number of times in the search logs that the specific search result was

selected after entering the query string query. For instance, the first row in Table 2.2

can be interpreted as follows: In the last month, there were 1 million searches where

the search result www.imdb.com/name/nm0001391/bio was selected after the query

"michael jackson" was submitted.

The number of triplets in Table 2.2 can be in the order of tens or hundreds of

millions. Storing all of them would require significant memory resources that a phone

might not be able to provide or a user might not be willing to sacrifice. Therefore, we

need to implement a policy for selecting which items to store. To maximize the query

volume that can be served by the cache, we should always store the most popular

pairs of queries and search results indicated by the top entries of Table 2.2.

Deciding how many of the most popular query-search result pairs to store is a

more complicated process. We select the number of query-search result pairs to cache

based on either a memory or cache saturation threshold, as described next.

Memory (NAND flash or DRAM) Threshold: Starting from the top entry

in Table 2.2, we run down through its entries and continuously add query-search result

pairs until a specific flash or DRAM memory size threshold Mth is reached. This
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Figure 2.7: Cumulative query-search result volume as a function of the most
popular query-search result pairs.

threshold can be set by either the phone itself based on its available memory resources

or by the user, depending on how much storage space and memory the user is willing

to sacrifice for PocketSearch.

Cache Saturation Threshold: Starting from the top entry in Table 2.2, we

run down through its entries and continuously add query-search result pairs until we

reach a query-search result pair with a normalized volume lower than a predetermined

threshold Vth. The normalized volume of a query-search result pair is generated by

dividing this pair’s volume by the total volume of all query-search result pairs in the

search logs. For instance, the normalized volume of the first query-search result pair

in Table 2.2 is equal to: 106/(5 ∗ 106) = 0.2.

The value of the cache saturation threshold is illustrated in Figure 2.7. It is

apparent that the value of adding query-search result pairs quickly diminishes. In

particular, slightly increasing the aggregate volume from 58% to 62% requires doubling

the amount of query-search result pairs from 20000 to 40000.
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Figure 2.8: PocketSearch’s DRAM overhead for different query-search result
aggregate volumes.

In practice, the mobile web search log analysis we performed showed that the

cache saturation threshold will be quickly reached before PocketSearch stretches the

memory or storage resources available on the phone. This can be seen in Figures 2.8

and 2.9 that show the size of DRAM and flash, respectively, required by PocketSearch

as a function of the aggregate query-search result volume represented by all the pairs

stored in the cache. It is clear that the saturation point of the cache is quickly reached

when the most popular query-search result pairs that correspond to approximately

55% of the cumulative query-search result volume have been cached. At this point, the

cache requires approximately 1MB of flash and 200KB of DRAM, which accounts for

less than 1% of the available memory and storage resources on a typical smartphone.

Independently of which threshold is used (memory or cache saturation), this

methodology identifies the n top entries in Table 2.2. Each of these n top query-search

result pairs is then associated with a ranking score that is produced by normalizing its

volume across all search results that correspond to the query. For instance, in the case

of query "michael jackson" in Table 2.2, the ranking score for the imdb search result is

equal to 106/(1.9∗106) = 0.53 and the score for the azlyrics is 9∗105/(1.9∗106) = 0.47.
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Figure 2.9: PocketSearch’s flash overhead for different query-search result
aggregate volumes.

The generated <query, search result, score> triplets can now be used to build the

cache on the phone.

Extracting PocketSearch’s cache contents directly from the mobile search logs

provides several advantages. First, even though there might be tens or even hundreds

of search results available for a given query, we only cache these search results that

are popular across all mobile users, limiting the amount of memory resources required.

Second, each query and search result pair extracted from the search logs is associated to

a ranking score, enabling the phone to rank search results locally. Third, by processing

the mobile search logs, we automatically discover the most common misspellings and

shortcuts of popular queries, enabling PocketSearch to cache search results for these

cases. As a result, queries such as "pof", and "boa" can now be served locally on

the phone by instantly displaying search results such as www.plentyoffish.com and

www.bankofamerica.com, respectively.
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2.5.2 Storage Architecture

The extracted set of <query, search result, score> triplets must be efficiently stored

on the phone. Storage efficiency is defined in two ways. First, the memory resources

required to store the search results should be as low as possible to permit many pocket

cloudlet services to concurrently run. Second, the time it takes to retrieve, rank and

display search results after the user enters a query should be as low as possible.

Figure 2.10 provides an overview of PocketSearch’s storage architecture. It consists

of two components, a hash table and a custom database of search results. The hash

table lives in main memory and its role is to link queries to search results. Given

a query, the hash table can quickly identify if we have a cache hit or a cache miss.

In the case of a cache hit, the hash table provides pointers to the database where

the search results for the submitted query are located. Along with each search result

pointer, the hash table provides its ranking score, enabling PocketSearch to properly

rank search results on the phone.

The custom database of search results resides in flash and its role is to store all

the available search results so that they occupy the least possible space and they can

be quickly retrieved. The data stored in the database for each search result includes

all the necessary information for generating the same search user experience with

the search engine: the actual web address, a short description of the website and the

human readable form of the web address.

Over time and as the user submits queries and clicks on search results, PocketSearch

updates both the hash table and the database of search results. Every time the user

clicks on a search result, its ranking score is properly updated in the hash table. In

addition, if a new query or a new search result is selected that does not exist in the

cache, both the hash table and the database are properly updated so that this query

and search result can be retrieved from the cache in the future.
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Figure 2.10: Overview of PocketSearch’s storage architecture.

Query Hash Table

Figure 2.11 shows the structure of the hash table used to link queries to search results.

Every entry in the hash table corresponds to one and only one query and has four fields.

The first field contains the hash value of the query string that this entry corresponds

to. The next two fields are of identical type and represent two search results associated

with the query (SR #1 and SR #2 in Figure 2.11.). As explained later in detail, only

two search results are stored per entry to minimize hash table’s memory footprint.

Each search result in the hash table is represented by a pair of numbers. The first

number corresponds to the hash value of the web address of the search result. This

value is used to uniquely identify a search result and, as described in the next section,

is used as a pointer to retrieve the information associated with the search result (short

description, web address, etc.) from the database. The second number corresponds to

the ranking score of the search result. The last field of each entry in the hash table
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Figure 2.11: The hash table data structure used to link queries to search
results.

is a 64-bit number that is used to log information about the two search results in

this entry. Currently, we use only one bit for each search result to indicate if the user

has ever accessed the specific query-search result pair. The rest of the flag bits are

reserved for future purposes.

In general, given a set of <query, search result, score> triplets, the hash table is

generated as follows. For every unique query in the set of triplets, we identify all the

search results associated with this query. An entry is created in the hash table for

the query and search results are added in descending order of score. If more than two

search results are associated with the same query, additional entries are created in

the hash table by properly setting the second argument of the hash function (e.g.,

"michael jackson" query in Figure 2.11).

This approach of linking queries to search results highlights two important design

decisions that were influenced by the properties of the <query, search result, score>

triplets extracted from the mobile web search logs. First, the number of search results

linked to a query in a hash table entry affects the memory footprint of the hash table.

This is illustrated in Figure 2.12 that shows the memory footprint of the hash table for
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Figure 2.12: The memory footprint of the hash table for different number
of search results per hash table entry.

different numbers of search results stored per hash table entry. The smallest memory

footprint is achieved when two search results are stored per hash table entry.

Second, the way queries are linked to search results can affect the storage re-

quirements of the database of search results. The simplest and fastest approach to

retrieving and displaying search results to the user would be to store them in a single

HTML file. Even though this approach would simplify the structure of the hash table,

it would significantly increase the flash memory required to store them. The reason

is that most of the search results are shared across a large number of queries. The

analysis of the logs indicates that only 60% of the search results in PocketSearch are

unique. If a single search result page were to be stored for every query, then 40%

of the search results would have to be stored at least twice. To avoid wasting flash

resources, we opted to store each search result once and then link individual queries

to each search result independently. Besides saving space, this approach also enables

PocketSearch to easily add/remove search results to/from the hash table and update

the ranking score of search results over time. As Section 2.6 shows, the overhead

introduced by this approach in terms of user response time is negligible.
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Figure 2.13: The 32-file custom database and illustration of the process of
retrieving a search result.

Search Results Organization

Search results are stored in flash using a custom database of plain text files to ensure

portability of PocketSearch across different mobile platforms. For every search result,

we store its title, which serves as the hyperlink to the landing page, a short description

of the landing page and the human readable form of the hyperlink (Figure 2.13).

The amount of memory required to store the information associated to a search

result into a file is, on average, 500 bytes. However, the actual memory space required

might be significantly higher due to the internal structure of flash chips. Flash

memories are organized in blocks of fixed size that are usually equal to 2KB, 4KB or
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Figure 2.14: Average time to retrieve two search results from the database
as a function of the number of files used to store the search results. The
vertical bars represent the deviation of the access time over 10 consecutive
experiments.

8KB depending on the size of the chip. If we store a 500-byte file containing a single

search result in flash memory, then this file will occupy 4, 8 or 16 times more flash

space than its actual size depending on the block size that is used.

In order to avoid flash fragmentation, multiple search results should be aggregated

and stored into as few files as possible. However, storing a large number of search

results into a single file could increase the time it takes PocketSearch to locate and

retrieve a search result and, thus, it could hurt the response time of the cache. As

a result, the way search results are aggregated into files and organized within a file

is critical for minimizing both, flash fragmentation and cache response time. By

evaluating different database organizations (Figure 2.14), we found that a number of

32 database files constitutes the best tradeoff between flash fragmentation and user

response time.

Figure 2.13 shows how search results are organized within a database file when 32

database files are used. Each search result is assigned to one of the 32 files based on

the hash value of its web address. In particular, the remainder of the division of the
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hash value with the number of files in the database (a number between 0 and 31) is

used to identify the file where the search result should be stored.

The first line in each of the 32 database files contains pairs of the form

(hash value, offset). The offset represents the actual offset from the beginning of

the file where the information for the search result represented by the hash value is

located. By parsing the first line of a database file we can identify where each search

result stored in this file is located. Whenever the user clicks on a search result that is

not already cached, PocketSearch will add the search result at the end of the database

file and augment the header of this file with the (hash value, offset) pair for this

search result.

2.5.3 Personalized Ranking

By monitoring user clicks over time, the personalization component of the cache is

aware of when and how many times the user selects a search result after a given query

is submitted. PocketSearch uses this information to incrementally update the ranking

score of the cached search results to offer a personalized search experience.

Assume that for a query Q, there are two search results R1 and R2 available in

the cache. Every time the user submits the query Q and clicks on the search result

R1, PocketSearch updates the scores S1 and S2, for the two search results R1 and R2,

respectively, as follows:

S1 = S1 + 1 (2.1)

S2 = S2 ∗ e−λ (2.2)

The ranking score of the selected search result is increased by 1 (Equation 2.1), the

maximum possible score of a search result extracted from the mobile search logs. In

that way, we always favor search results that the user has selected. Note that if this

search result did not initially exist in the cache (selected after a cache miss), then a
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new entry in the hash table is created that links the submitted query to the selected

search result and its score becomes equal to 1. At the same time, the ranking score for

the unselected search result is exponentially decreased 3 (Equation 2.2). This enables

PocketSearch to take into account the freshness of user clicks. For instance, if search

result R1 was clicked 100 times one month ago and search result R2 was clicked 100

times during last week, then the ranking score for R2 will be higher.

Using Equations (2.1) and (2.2), the ranking score of the search results, at any

given time, reflects both the number and freshness of past user clicks. In practice, any

personalization ranking algorithm [142, 143] could be used with the proposed cache.

2.5.4 Cache Management

Figure 2.15 provides an overview of the mechanism used to adaptively manage the

community component of the cache. The phone transmits to the server its current

version of the hash table. The server runs through the hash table and removes all the

query-search result pairs that have not been accessed by the user in the past. This

can be easily done by examining the flags column in the hash table (Figure 2.11).

The query-search result pairs that have been accessed by the user in the past are only

removed from the cache when their ranking score becomes lower than a predetermined

threshold (e.g., the user has not accessed the search result over the last three months).

At the same time, the server dynamically (e.g., daily, when a new trend is detected

etc.) extracts the most popular queries and search results from the combined mobile

search logs (search engine logs, contributed personal user logs), as described in Section

2.5.1, and adds them to the hash table. During this process, conflicts might arise in the

sense that a query-search result pair that already exists in the hash table (previously

accessed by the user) might re-appear in the popular set of queries and search results

extracted on the server. The conflict is caused when the ranking score stored in the
3The parameter λ controls how fast the ranking score is decayed.
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Figure 2.15: Overview of PocketSearch’s updating process.

hash table is different from the new ranking score computed on the server based on

the search log analysis. PocketSearch resolves these conflicts by always adopting the

maximum ranking score.

After the hash table has been updated, the server creates the necessary patch files

for the database files that live on the phone. The new hash table and the 32 patch files

are transmitted to the phone and the new cache becomes available to the user. Note

that the amount of data exchanged between the phone and the server will usually

be less than 1.5 MB, given that PocketSearch requires, on average, approximately

200 KB for storing the hash table (Figure 2.8) and 1MB for storing the search results

(Figure 2.9).

2.6 PocketSearch Evaluation

Pocket cloudlets, in general, and PocketSearch, in particular, by responding to service

requests locally and reducing the need for long-range cellular communication result in
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reduced cost, lower energy consumption, lower response time and lower bandwidth

usage. In order to evaluate the benefits of PocketSearch, we first quantify the amount

of time and energy required to serve a search query through PocketSearch and compare

its performance to that of the different radio links available on the phone. Second, we

extract anonymized search query streams from the m.bing.com search logs and run

them against PocketSearch to quantify what fraction of the query volume of an actual

user can be served locally on the phone.

2.6.1 Cache Hit Performance

All measurements presented in this section were acquired using the prototype Pocket-

Search implementation on a Sony Ericsson Experia X1a cell phone running Windows

Mobile 6.1 connected to AT&T’s network. To measure how fast queries are served

using PocketSearch and the different radios available on the phone (EDGE, 3G4,

802.11g), we randomly selected 100 different queries for which cached search results

were available. In every experiment, each of the 100 queries was submitted 100 times

and the average user response time was calculated. The user response time is defined

as the elapsed time from the moment the query is submitted to the moment the

embedded browser object in the application has completed rendering the search results

web page.

In the experiments where the PocketSearch cache was used to serve queries, a cache

containing all the query-search result pairs that account for 55% of the cumulative

query-search result volume over a period of several months was used. This cache

included approximately 2500 search results occupying 1 MB of flash space, as described

in Section 2.5.2.
43G is the commonly-used commercial name. More specifically, the HSPA protocol was used.
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Figure 2.16: Average search user response time per query.

Search User Response Time

Figure 2.16 shows the average user response time per query when the PocketSearch

cache or one of the radios on the phone is used. On average, PocketSearch is able

to serve a query 16 times faster than 3G, 25 times faster than EDGE and 7 times

faster than 802.11g. Note that even though 802.11g can provide a low user response

time that is slightly higher than 2 seconds, it has a major drawback. Due to its high

power consumption, 802.11g is rarely turned on and connected to an access point on

a continuous basis. As a result, in practice, 802.11g is not instantly available and

requires extra steps that introduce delay and unnecessary user interaction.

Table 2.3 shows the breakdown of PocketSearch’s user response time in the case of

a cache hit. 96.7% of the time it takes PocketSearch to serve a query is spent at the

browser while rendering the search results web page. The time it takes the cache to

locate and retrieve search results is approximately 10ms and it accounts for only 3.3%

of the overall user response time.

Furthermore, the time it takes PocketSearch to look up its hash table and determine

if a query is a cache hit or a cache miss is only 10µs. Therefore, in the case of a

cache miss, the overall user response time will only be increased by 10µs, a negligible
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Table 2.3: PocketSearch user response time breakdown.

Operation Average Time Percentage
(ms)

Hash Table Lookup 0.01 ≈ 0%
Fetch Search Results 10 2.7%
Browser Rendering 361 96.7%

Miscellaneous 7 1.7%
Total 378 100%

Table 2.4: Navigation user response time for PocketSearch and 3G for two
example webpage load times.

Navigation user response time
PocketSearch 3G Speedup over 3G

Lightweight Page 15.378s 21.048s 28.7%
Heavyweight Page 30.378s 36.048s 16.7%

increase given that any radio on the phone requires several seconds to serve a search

query.

Navigation User Response Time

By reducing search user response time, PocketSearch manages to also improve the

overall navigation user response time that includes both the time it takes the user to

first search the web as well as the time to download the actual webpage. Table 2.4

shows the actual navigation time for two representative pages, a lightweight version

and a heavyweight version that take 15 seconds and 30 seconds, respectively, to be

downloaded and rendered over 3G. When PocketSearch serves the search results,

the user can access the desired webpage up to approximately 29% faster than when

querying through the 3G link.
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Figure 2.17: Average energy per query.

Energy Consumption

Figure 2.17 shows the average energy consumed by the phone per query when Pock-

etSearch or one of the radios on the phone is used. PocketSearch is on average 23

times more energy efficient than 3G, 41 times more energy efficient than EDGE and

11 times more energy efficient that 802.11g.

Note that the gap in the energy efficiency between PocketSearch and the different

radios on the phone is larger than the corresponding gap in the user response time

shown in Figure 2.16. This happens because, as shown in Figure 2.18, PocketSearch

conserves energy in two ways. First, no data are transmitted or received in the case

of a cache hit, and thus the overall power consumption of the phone remains low

(900mW vs. 1500mW ). Second, since PocketSearch achieves a user response time

that is an order of magnitude lower compared to when the radios on the phone are

used (4 seconds vs. 40 seconds), the per query energy dissipation is significantly lower

for PocketSearch.

2.6.2 Cache Hit Rate

To quantify the cache hit rate achieved by PocketSearch for a typical user, we

used anonymized search query streams from the mobile search logs. To ensure a
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Figure 2.18: Total time and power consumption for serving 10 consecutive
queries through PocketSearch (top) and the 3G radio (bottom).

representative and unbiased selection of search query streams, we classified users

in four different classes based on their monthly query volume. Table 2.5 shows the

different user classes and the percentage of users in the mobile search logs that belong

to each class. Note that we ignore users that submit fewer than 20 queries per month

for two reasons. First, PocketSearch targets users that frequently access the Internet

and search the web. Second, as higher-end smartphones with advanced browsing

capabilities become more and more available, the average monthly query volume

submitted by individual users will increase beyond the threshold of 20 queries per

month.

For the experiments described in this section, we randomly selected 100 anonymized

users from each class shown in Table 2.5 and extracted their search query streams from

the mobile search logs over a period of one month. Each of the 400 search query streams
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Table 2.5: Classes of users and their characteristics.

User Class Monthly % of Users
Query Volume

Low Volume [20,40) 55%
Medium Volume [40,140) 36%
High Volume [140,460) 8%

Extreme Volume [460,∞) 1%

was replayed against the PocketSearch cache that was generated using the mobile

search logs of the preceding month. The resulting cache contained approximately 2500

search results that corresponded to 55% of the cumulative query-search result volume

in the search logs. Note that the data used to build the cache and the data used to

extract the 400 query streams were non-overlapping.

Hit Rate Results

Figure 2.19 shows the average hit rate for each user class described in Table 2.5. On

average, 65% of the queries that an individual user submits are cache hits, and can be

served 16 times faster. By examining Figure 2.19, it becomes apparent that the cache

hit rate increases with the monthly query volume. PocketSearch achieves a cache hit

rate of approximately 60% for the low volume class, which immediately jumps to 70%

for the medium volume class and to 75% for the high and extreme volume classes.

Figure 2.19 also shows the average cache hit rate for every user class in the cases

when PocketSearch uses only either the community or personalization component of

the cache. When only the community component of the cache is used, new queries

and search results selected by the user are not cached over time and, therefore, the

cache cannot take advantage of the repeatability of mobile queries. When only the

personalization component of the cache is used, the cache is initially empty and,

therefore, cache hits are achieved only from repeated queries.
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Figure 2.19: PocketSearch’s average cache hit rate.

As Figure 2.19 illustrates, when only the community part of the cache is used, the

average hit rate across all user classes is reduced from 65% to 55%. What is even

more interesting is the fact that the hit rate seems to increase monotonically with the

monthly query volume. Even though the exact same cache is used across all classes

(since personalization is not used), the users that submit more queries seem to also

experience higher hit rates.

When only the personalization part of the cache is used, the average hit rate across

all user classes is reduced from 65% to 56.5%. Note that for every user class, the

personalization part of the cache achieves the same or higher hit rate compared to the

case where only the community part of the cache is used. This is another indication of

the high repeatability of mobile queries that the personalization part of the cache is

able to capture. In addition, the fact that the cache hit rate increases for users with

higher query volumes, due to the personalized component of the cache, shows that

users with higher query volumes repeat the same queries more often.

Even though users repeat mobile queries frequently, the community part of the

cache is still very important for the overall user experience. Figure 2.20 shows the

average hit rate for the different user classes during the first week [Figure 2.20(a)] and

first two weeks [Figure 2.20(b)] of the one-month long query streams. Note that after
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Figure 2.20: Average cache hit rate across the four user classes for (a) the
first week and (b) the first two weeks of the month.

the first week, the hit rate of the personalization component of the cache remains lower

than that of the community component of the cache. In particular, the fewer queries

a user submits, the more time it takes the personalization component to warm up

and be able to take advantage of the repeated queries. However, even during the first

week, PocketSearch cache is able to provide the same hit rate with the one achieved

in Figure 2.20 after a month. The community part of the cache provides a warm start

for PocketSearch and good initial search user experience.
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Figure 2.21: Breakdown of PocketSearch’s cache hits into navigational and
non-navigational across the four user classes.

The breakdown of the queries that result into a cache hit can be seen in Figure 2.21.

On average and across all user classes, 59% of the cache hits are navigational queries5

(e.g., "facebook", "youtube", etc.) and the rest 41% are non-navigational queries. The

non-navigational hit rates are significantly increased or even doubled when compared

to the medium volume class for both the high and extreme volume classes. This trend

indicates that higher volume users tend to submit more diversified queries. However,

even for this type of users, PocketSearch is able to achieve high hit rates by taking

advantage of the repeatability of mobile queries with its personalization component.

Daily Cache Updates

To understand how changes on the set of popular queries and search results on the

server affect PocketSearch’s cache hit rate, we repeated the same experiments while

updating the PocketSearch cache on a daily basis, as described in Section 2.5.4. On

average, across all user classes, PocketSearch achieves a cache hit rate of 66% when

daily updates are used. This incremental improvement of 1.5 percentage points (66%
5These are queries that current browser cache substring matching techniques could also serve.

As more and more mobile services become available through dedicated applications, the volume of
navigational queries may decrease but is expected to remain substantial. Some users still prefer to
access the service by typing its name in the search text box.
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Figure 2.22: Number of different search results in the community part of the
cache for every pair of days over the one month period used for evaluation.

vs. 65% hit rate when daily updates are not used) is due to the fact that the most

popular set of queries and search results did not change significantly over the one

month period we examined. As Figure 2.22 shows, on average, 40% to 50% of the

approximately 2500 search results in the cache changed across days. This indicates

that the search results that are responsible for the majority of hits in the community

part of the cache are among the top 1000 most popular search results that always

remain popular across different days.

2.6.3 Web Search Service Performance Benefits

The example of PocketSearch highlights the impact that the pocket cloudlet architec-

ture can have on mobile user experience. Using approximately only 200 KB of DRAM
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Figure 2.23: Average user response time for the different communication
interfaces with and without PocketSearch. The percentage by which Pock-
etSearch reduces the average user response time is also shown on top of
the bars.

and 1MB of flash memory, PocketSearch can instantly serve, on average, 66% of the

query volume that users submit. The benefits are manifold:

1. User response time (latency): In 66% of the cases, PocketSearch can provide

search results locally with an average response time of only 378msec. Figure 2.23

shows the average user response time for the various communication interfaces

with and without PocketSearch. PocketSearch reduces the average response time

by 56%-63%.

2. Energy consumption: Communication interfaces are among the most power-

hungry components of mobile devices. In 66% of the cases in which PocketSearch

can provide search results locally, the energy consumption per query is only 3.8J .

As Figure 2.24 shows, PocketSearch reduces the average energy consumption

per query by 60%-64%.

3. Communication bandwidth and data center load: By serving 66% of the queries

locally, PocketSearch reduces the communication bandwidth and the search

engine data center load by the same percentage.
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Figure 2.24: Average energy consumed per query for the different com-
munication interfaces with and without PocketSearch. The percentage by
which PocketSearch reduces the average energy consumption is also shown
on top of the bars.

2.7 Architectural Considerations

Even though PocketSearch focuses on search services, the proposed architecture can

serve as a template architecture for a broader family of cloudlets. Several other mobile

cloud services beyond web search could leverage the same pocket cloudlet architecture,

but each service eventually imposes its own memory requirements that might be very

different when compared to PocketSearch. For instance, as Table 2.1 shows, a mapping

service cloudlet would require approximately 25 GB to cache all the map tiles for the

user’s state. Furthermore, creating a yellow pages cloudlet requires storing information

about 23 million businesses across the United States, which according to Table 2.1

corresponds to approximately 100 GB. Similarly, web content, mobile ads and other

pocket cloudlets impose their own requirements.

Even though each pocket cloudlet might share the same architecture and design

principles, when multiple cloudlets with different requirements run on the same

device, they naturally compete for resources within themselves and with other user

applications. Managing the system resources properly across multiple cloudlets poses

several architectural challenges.
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User versus pocket cloudlets: The operating system will need to limit memory

consumption such that enough memory is available to user data and applications. The

more content cloudlets cache, the larger their indexes become. These indexes are stored

in main memory and compete with regular user application memory usage. Pushing

the indexes (or part of them) into slow storage-class memory would significantly affect

cloudlet performance. We suggest the adoption of an intermediate tier consisting of

fast storage-class memory, as described in Section 2.3, to address this problem.

Pocket cloudlet interactions: Many pocket cloudlet services cache related data.

For example, when the user performs a web search, both search and ad cloudlets

are invoked for the same query. In addition, the results will point to related web

content, map tiles and yellow page entries. Different cloudlets have distinct storage

requirements, and their relative storage allocation should take this into account. In

addition, we believe that when memory needs to be reclaimed and cache entries evicted,

it should be done in a coordinated fashion. If a particular query misses in the local

search cache, there is not much benefit in hitting the ad cache because the latency

bottleneck to service this query will be waking up the radio. Cache eviction policies

should be managed by the operating system and coordinated such that closely related

items are evicted together.

Security: Some cloudlets may include sensitive user and/or application data in

their caches. Consequently, other cloudlets should not be allowed unrestricted access

to those cache contents. For example, a map cloudlet should not be allowed to access

information regarding a user’s recent bank transactions. We envision the operating

system will provide such isolation and access control.
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2.8 Related Work

This section compares the Pocket Cloudlets architecture with other proposed works

that employ caching and other complimentary approaches for the purpose improving

the user experience of cloud services. Our mobile search characterization is also

compared with previous work.

2.8.1 Caching of Services

To improve user experience, caching of information on client devices has been applied

in the past in the context of web content [65, 97, 103, 113, 115] and advertisements

[50]. Our work on Pocket Cloudlets differs in three ways. First, we describe a

generalized mobile caching architecture that can be applied to various cloud services.

Second, PocketSearch is complementary to these efforts, in the sense that it focuses on

caching search results and not web content. Third, as opposed to the previous work,

PocketSearch was designed and implemented on an actual smartphone, addressing the

challenges of building such an architecture on a mobile device.

File server caching systems, such as Coda [18], have focused on remote/offline

access of files. Such schemes do not distinguish between a search result and a standard

webpage HTML file, let alone allow for personalized ranking of results within a page.

They focus on the level of files as opposed to individual service data items. Since these

systems have no notion of search results, they do not take into account search trends

into designing optimal client-side caching strategies. For instance, our data-driven

approach indicated that by storing individual search results, storage requirements can

be reduced by a factor of 8. In addition, PocketSearch combines both personal and

community access characteristics to decide what search results to cache.

Approaches focusing on client side database caching have been combined with web

browser caches to locally serve dynamic pages [13, 41]. Such approaches, however,
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aim to reproduce the exact same dynamic page as the servers (e.g., search engines).

They do not focus on assessing the popularity and cacheability of individual objects

(e.g., search results) within the dynamic page (e.g., search results page), let alone

personalize their ranking.

Content delivery or distribution networks (CDNs), such as the commercially avail-

able Akamai (www.akamai.com), maintain geographically distributed data caches

aiming to minimize user access time to content. CDNs are complementary to Pock-

etSearch. CDNs have great impact on wired networks where the latency between

the client device and the nearby CDN node is low. However, on mobile devices, the

bottleneck is the wireless link. By appropriately combining Pocket Cloudlets and

CDNs, distributed cloud services that provide instant user experience can be created.

In the desktop search domain, the temporal locality and repeatability of queries

across users has been exploited by proposing a server-side search caching scheme to

reduce the load of search engines and improve user response time [36, 96, 153]. In the

mobile domain though, the performance bottleneck is not the search engine but the

slow radio link. As opposed to these approaches, PocketSearch is a client-based search

cache that lives on the phone and enables search results to be displayed instantaneously

as the user enters a query.

2.8.2 Other Approaches to Improve User Experience: Key-

word Auto-completion

Previous work has proposed keyword auto-completion services on mobile devices [71]

in order to facilitate and speed up the entry of query strings by the user. Such services

are already popular on smartphone browsers and other mobile search applications and

are complementary to PocketSearch, which focuses on providing fast search results

and not query suggestions.
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Browsers and dedicated search applications on high-end smartphones, such as

Android phones and the iPhone, have recently enabled website suggestions as the user

types a query. This is done in two ways.

First, for every new letter typed in the search box, a query is submitted in the

background to the server for the partially entered query term and the most popular

search result is returned as a website suggestion to the user. Note, that in this case,

a regular search query has to be submitted to the server over the radio link and,

therefore, the usual slow mobile search experience takes place.

Second, as the user types a query, a substring matching algorithm between the

partial query string and all the website addresses in browser’s cache can instantly

provide the most relevant website that has been previously visited by the user.

Unfortunately, this approach only works for a portion of the navigational queries.

2.8.3 Search Log Analysis

There have been several research efforts on understanding mobile search behavior

through search log analysis [27, 28, 68, 69, 70, 71, 72, 155]. These efforts have analyzed

search query volumes that vary from hundreds of thousands to several tens of millions

of queries. The search log analysis presented in this paper differs in two fundamental

ways. First, we analyze 200 million mobile search queries, a query volume that is one

order of magnitude larger than the query volume used in any other mobile search

log study; volumes that large have been studied before only for desktop search [133].

Second, besides reporting similar observations on the locality of queries across mobile

users, we also study in detail the repeatability of mobile queries for individual users.
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2.9 Conclusions

To reduce the dependence of non-geo-locality services on long-range communications,

this chapter presented the Pocket Cloudlets architecture. A pocket cloudlet is a mobile

device-resident architecture that selectively caches parts of a cloud service and serves

requests locally, when possible. By serving requests locally, pocket cloudlets help

reduce the need for long-range communications, resulting in improved user experience.

The Pocket Cloudlets architecture is a collaborative and adaptive caching scheme.

Locally constructed personal user models are collaboratively combined to construct

community models. Both personal and community models are then used to decide on

selective caching, ranking and adaptive prefetching of service data items.

To demonstrate the potential of the Pocket Cloudlets architecture, this chapter

presented PocketSearch, a mobile search pocket cloudlet. To guide the design of

PocketSearch, we studied the cacheability of mobile search by studying both community

and personal user access patterns. We found that mobile search is significantly more

concentrated, as compared to desktop search, on both a community and a personal

user basis. By utilizing both personal user and collaboratively-generated community

access models to maximize its hit rate, we showed that PocketSearch can serve 66% of

the web search queries without having to use the slow 3G link and by using only a

small fraction of the mobile device storage resources. As a result, PocketSearch leads

to significantly reduced cellular communication bandwidth (66%), user response time

(62%) and power consumption (63%).

The example of PocketSearch demonstrates that collaborative and adaptive pocket

cloudlets can efficiently augment traditional cloud services. Furthermore, as our

analysis shows, the NVM storage capacity of modern smartphones is already high

enough to support a rich set of traditional cloud services besides web search. By

augmenting existing cloud services with a mobile-device resident pocket cloudlets

architecture, a significant percentage of cloud service requests may be served locally,
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mitigating pressure on both cellular links and data centers. Above all, by avoiding,

when possible, the use of slow and costly long-range cellular communications, the

mobile user experience improves significantly.
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Chapter 3

RegReS Middleware for Geo-locality

Services

The previous chapter presented the Pocket Cloudlets architecture that reduces the use

of slow and costly long-range communications for non-geo-locality cloud services. For

geo-locality services, to completely alleviate their dependence on long-range commu-

nications, this chapter presents the Region-Resident Services (RegReS) middleware.

RegReS enables the full hosting of such services on regional confederations of mobile

devices that collaborate over short-range communications. To avoid wasting the

resources of mobile devices when running resource-intensive tasks (e.g., SignalGuru),

RegReS does not use all available devices but seeks to maintain a specified service

carrier density. To maintain the specified density in highly-volatile mobile networks,

RegReS uses a fully-distributed, collaborative and adaptive scheme to estimate its

current value and guide service spawning decisions. We explore the ability of RegReS

to estimate and maintain the specified density of service carriers across a wide range of

configurations and study the effects of different service spawning policies and criteria.

Furthermore, we examine which dynamic factors may influence RegReS’s performance,

presenting and evaluating a mechanism to adapt.
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3.1 Introduction

Networked mobile computing devices are becoming increasingly pervasive. Powerful

smartphones are nearly ubiquitous. Furthermore, soon a large percentage of vehicles

will be equipped with advanced Personal Navigation Devices (PND) that will have

not only motion sensors (GPS, accelerometer, gyroscope, compass) but also fast,

short-range ad hoc communications (e.g., DSRC [148]).

These trends are prompting exciting location-based services that leverage oppor-

tunistic local sensing. For instance, on-board mobile devices using their wireless

interfaces, GPS, gyro and accelerometer information can help estimate traffic con-

ditions [99], detect road abnormalities [33], collect information for available parking

spots [19, 98], predict the schedule of traffic signals [85] and measure air or noise

pollution [116].

Typically, location-based services have the data geo-locality property. This means

that the data of the location-based service is both generated (sensed) and consumed

locally, i.e., within a defined geographic region. Devices need to be within a given

geographic region to sense the necessary data. Also, only devices within this geographic

region are interested in consuming this sensed data. For example, in the case of a

parking spot availability service for Princeton, only vehicles moving within Princeton

can detect the parking spot availabilities as they drive by [98] and only vehicles in

Princeton are interested in finding available parking spots there, i.e., in their vicinity.

A driver would be willing to drive at most a couple miles in order to find a spot to

park.

Traditionally, location-based mobile services have been architected atop Internet

cloud servers accessed via long-range cellular communications. However, as noted

in Section 1.2, long-range communications are scarce, costly and lead to poor user

experience. Long-range communications should thus be used judiciously and only

when necessary.
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In this chapter, given the data geo-locality property of many location-based

services and the limitations of the traditional mobile cloud service architecture, we

explore RegReS. RegReS enables the full hosting of geo-locality services on the mobile

devices in the region of interest, with the devices collaborating over short-range

communications to form a distributed computing platform, obviating the need for

long-range communications and cloud server infrastructure. Given the high node

density, mobility and availability of free device-to-device (ad hoc) communications,

such a grassroots distributed computing platform is particularly suited for geo-locality

services, as highlighted previously in [19, 89].

While mobile devices are ever more powerful, their resources are still often con-

strained and should thus be used judiciously. As we show in the next chapter, some

services, like our SignalGuru, may be particularly resource-intensive and hog certain

mobile device resources (e.g., CPU). As a result, services should often be spawned on

only as many mobile devices as necessary.

RegReS thus allows each service to specify its desired service carrier density

(the number of mobile devices that should host this service within a region) along

with its region of interest and lifetime. The RegReS middleware, which runs on the

carriers, ensures that this target carrier density is maintained in a distributed fashion.

RegReS uses a collaborative and adaptive estimation scheme to track and estimate

the current carrier density for a service. RegReS then employs spawn policies and

carrier selection criteria to decide when and which nodes to spawn as new carriers.

Figure 3.1 illustrates an instance of a RegReS-enabled service. As shown here, the

region of a service is a polygon and contains three types of nodes (mobile devices).

The nodes that carry the service are termed service carriers. The nodes that do not

carry the service but have the RegReS middleware and could thus potentially become

future carriers are termed RegReS nodes or just nodes. Last, the non-RegReS nodes

that do not have the RegReS middleware cannot communicate (collaborate) with
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Figure 3.1: RegReS maintains each service within the specified region (poly-
gon) and for the specified service lifetime.

other regional nodes for the maintenance of a service and are thus ignored in our

discussion.

In this chapter, the contributions of our work on RegReS are as follows:

1. We identify the five traits that middleware that support grassroots geo-locality

services possess and argue for service carrier density as the suitable metric for

such mobile services. Using this metric, our solution is the first to account for

all five traits.

2. We propose the first collaborative approach in Mobile Ad hoc Networks

(MANETs) that adapts to environmental parameters and maintains a targeted

density of services, and we show its effectiveness on a testbed.

3. We demonstrate RegReS’s potential by using it as the middleware for the

deployment of a collaborative parking availability service.

The structure of this chapter is as follows. Section 3.2 surveys related work and

Section 3.3 describes the design of RegReS. Next, Section 3.4 describes the evaluation

methodology, and Section 3.5 presents performance results.
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3.2 Background and Related Work

Typically, for grassroots geo-locality services, a certain number of service carriers must

be maintained in the region of interest for sensing, storage and computation. We term

this service carrier density (d). We argue that each application service should choose

and specify its own desired d in the targeted geographical region of deployment so as

to be able to reflect its own cost-performance tradeoffs.

For instance, in an application that estimates average vehicle speed on roads in a

region, sensing may be noisy, as a given vehicle that reports its speed may be moving

faster or slower than most other vehicles. With a sufficient carrier density across

the region of interest, a good enough sampling density can be attained, with outliers

removed. On the other hand, having too many vehicles as service carriers leads to

high cost in terms of computing, storage and communications overhead.

Similarly, for a parking availability service that detects free parking spots with

noisy ultrasonic sensors [98], higher density of service carriers leads to more frequent

road scanning and more robust detection. Yet, too many carriers lead to unnecessary

consumption of regional computational resources.

While most geo-locality services need to maintain such a desired regional sensing

capacity based on their own cost-performance tradeoffs, there is often no intuitive

definition of sensing range. For example, in the case of traffic estimation, what is the

sensing range for a vehicle that is reporting its own vehicle speed measurement?

On the other hand, proposed geo-locality services do not typically need hard

guarantees on sensing coverage (k-coverage) as they often do not focus on life-critical

applications (e.g., intrusion detection in sensor networks). Opportunistic sensing is

often both sufficient and the only approach possible given the uncontrolled mobile

device (e.g., smartphone, vehicular computer) density and mobility.

Therefore, we target service carrier density as the metric for grassroots geo-locality

services. RegReS allows services to specify their desired carrier density (d) along with
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their region and lifetime. This carrier density determines the population of carriers

that RegReS should seek to maintain within the service’s region and for the specified

service’s lifetime.

3.2.1 Traits of Grassroots Geo-locality Services

Grassroots geo-locality services possess five key characteristics, which make the main-

tenance of the target number of service carriers a challenging task. As Table 3.1 shows,

no prior works sufficiently tackle all five challenges:

1. Variable (high) node mobility: Nodes (mobile devices) are carried by people as

they walk, drive or ride the public transit. As a result, mobility varies greatly.

Schemes need to adapt to variable node mobility.

2. Uncontrolled node mobility: Proposed schemes should not assume that the

movement of nodes can be orchestrated to better support services. Schemes

need to be able to leverage nodes opportunistically.

3. Uncontrolled and variable node density: The node density of opportunistic mobile

networks varies and can be especially high in cities, up to several hundreds or

thousands in a 5km2 region [121]. More often than not, only a small fraction of

the nodes is necessary to provide a given service. Schemes need to adapt and

selectively use only as many nodes as needed.

4. Significant service activation/replication (spawn) cost: Geo-locality services can

sense and gather data rapidly, leading to a large amount of state that needs to be

transferred whenever a new carrier is spawned. Furthermore, there is no control

over the software each mobile device has. As a result, signed code modules may

need to be moved to new carriers as well. Spawns can, hence, be several tens of

KB. Proposed schemes should thus retain a service carrier as long as possible

(while it remains in the region), and minimize the spawning of new carriers.
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5. Challenging operating environments: Proposed schemes need to be robust to

node failures; nodes may crash, run out of battery, get powered off by their

owners, or just exit the region of interest.

3.2.2 Service Replication Literature

Proposed grassroots approaches targeting geo-locality services [19, 89, 95] have been

largely based on schemes that epidemically push the service on all available nodes.

However, as noted earlier, particularly in dense urban environments, using all nodes

for a given service is both unnecessary and wasteful.

Other approaches, in contrast, do not proactively push the service to all regional

nodes, but have the nodes interested in the service epidemically pull it [95] or subscribe

to receive it [91]. However, such approaches cannot guarantee that the critical number

of service carriers will be available; often a disparity will exist between the number

of service consumers/subscribers and the number of carriers that are necessary to

support the service.

A third class of approaches tries to control the number of service carriers by in-

structing current carriers to epidemically spawn new carriers with a defined probability

[88, 102, 157]. While such approaches are not as wasteful as approaches that use all

nodes, our results in (Section 3.5.1) show that a fixed spawn probability may work

well for a specific case, but fails to adapt across different configurations (node mobility,

region size, etc.).

A fourth class of theoretical works [12, 77, 87, 91, 137] begin by creating the

desired number of service replicas/tokens and assume that the services can be moved

between nodes without accounting for node failures. Lastly, k-coverage literature in

sensor networks assumes either that nodes are static [75] or that their mobility can

be controlled [16, 138]. None of these assumptions hold in real-world opportunistic
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networks. In such networks, nodes may be highly mobile and move in a self-determined

fashion, e.g., mobile phones carried by users as they drive to their personal destination.

3.2.3 Density Estimation Literature

In RegReS, service carriers track their density across the region so that they can make

informed decisions about whether to spawn a new carrier or not. No prior art has

used service density as the metric to guide service activation/replication. Furthermore,

despite the importance of determining density in MANETs, little work has been done

so far in estimating it. In [119], the authors propose a centralized node census approach,

which is not suited for highly-distributed opportunistic networks.

Our collaborative distributed density estimation scheme draws from [156]. In

contrast to [156], RegReS carriers do not exchange complete logs of raw measurements

with their timestamps, but only the estimates they themselves have built or received

from other carriers together with the confidence value for these estimates. Such

estimates may be based on multiple such measurements. Thus, the amount of

information exchanged for density estimation is significantly reduced in RegReS.

Collaborative schemes for estimating local density are also used in [38, 42, 89] to

guide (request or vehicle) routing decisions. However, these schemes focus only on

local density and limit the information exchange to only between direct neighbors

within communications range and do not leverage opportunistic forwarding.

Above all, RegReS, unlike prior art, adapts its estimation scheme to node dynamics.

As shown in Section 3.5.1, this adaptivity is of critical importance.

3.2.4 RegReS for Geo-locality Services

Here, we outline how RegReS handles the five key traits of grassroots geo-locality

services, tackling a key gap that has not been addressed by prior research:
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1. Uncontrolled and variable node mobility: RegReS uses nodes opportunistically

and adapts its density estimation scheme to their mobility patterns.

2. Uncontrolled and variable node density: RegReS targets a service-specified

density of regional nodes (the designated carriers) for maintaining the service.

3. Significant service activation/replication (spawn) cost: RegReS uses nodes as

service carriers for as long as they remain in the region, as opposed to k-coverage

schemes that use sleep-schedule-based activation [16, 138]. Through simulations,

we found that this can result in up to 4.9× reduction in the number of spawns

for the experimental scenarios considered here.

4. Challenging operating environments: RegReS is fully distributed and adaptively

tracks and reacts to the current density of carriers. This makes it robust to

carrier failures and departures from the region.

3.2.5 Privacy, Security and Trust

Opportunistic and collaborative services, like the ones that RegReS enables, come

with privacy, security and trust implications. RegReS can use DLT certificates [90] or

a TPM [131] to ensure trust in the service carrier operations. Furthermore, spatio-

temporal cloaking [49] and other proposed approaches for grassroots participatory

sensing [45, 56] can be used in RegReS to provide security and privacy.

3.3 RegReS Design: Carrier Density Maintenance

To maintain the desired carrier density, RegReS uses a collaborative and adaptive dis-

tributed approach to estimate it across the region and react accordingly. It determines

when to spawn new carriers and how to select the carriers1. The design of RegReS is

thus broken down into three sub-problems:
1The maintenance of the service is the responsibility of only the existing carriers. Non-carrier

nodes are not involved and, hence, do not incur any overhead.
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1. How to estimate carrier density: Carriers measure the density within their

communication range periodically. What information should carriers exchange based

on their measurements and how should it be used to calculate an estimate? Above

all, how can this estimation scheme automatically adapt to system parameters (node

mobility, region size, etc.)?

2. When to spawn: When can a carrier be sufficiently confident, given its

estimate, that it needs to spawn a new carrier?

3. How to select carriers: Once a carrier decides to spawn a new carrier, which

node should it pick?

Solutions to these three sub-problems constitute the novel contributions of Re-

gReS. Other peripheral functions, such as service discovery and updates, are done

epidemically.

3.3.1 Carrier Density Estimation

RegReS estimates carrier density in a collaborative fashion, through small metadata

packets that nodes broadcast every P seconds. These Service Advertisement (SA)

packets contain information about the services (if any) nodes carry. They allow for:

1) service discovery, 2) service version updates, and 3) discovery of potential carrier

nodes if spawning is needed. RegReS leverages these packets to measure local density

as well as allow carriers of the same service to exchange density estimations. The

exact format of SA packets is shown in Figure 3.2.

The carrier density d is expressed in units of number of carriers per πR2 area,

where R is the communication range:

d =
Ncarriers

α× Area
, where α =

1

πR2
(3.1)
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Figure 3.2: Service Advertisement packet. Node IDs are unique identifiers of
nodes. <Speed, Heading, Longitude, Latitude> determines the average speed,
direction that a node is moving towards and current location, and are
used in carrier selection to calculate ERRT. Service ID and Version uniquely
identify each carried service. Residence Time tracks the number of periods
that the carrier has resided within the region of this service and is used
for determining the value of f . The <Node ID, DE, DEC> triplets are used
for collaborative density estimation. One such Service Block is included in
the SA packet for each service the node is carrying.

If, for example, Ncarriers = 100 is the target population of carriers within the

service’s region, Area = 2216m × 2216m is the region size and R = 250m, then in

RegReS, the targeted service carrier density is d = 4 carriers per communication

range.

Estimation Algorithm

Every P seconds2, carriers measure the number of other carriers (of the same service)

in their range, by listening to SA packets. Measurements are exponentially-weighted-

averaged to form a density estimate that is biased towards newer measurements. The

factor 0 ≤ f < 1 by which the measurements’ weights decay over time is called

the decay factor. The smaller f is, the faster measurements decay. If m−k is the

measurement done k periods ago, the current Density Estimate (DE) is calculated as

follows:

DE =

∑k
i=0(1− f)× f i ×m−i∑k

i=0(1− f)× f i
(3.2)

2Nodes are time-synchronized with a GPS device. They use a random backoff scheme to broadcast
their SA packet within each period.

87



This formula can be rewritten in the form of a moving average to avoid maintaining

the full measurement history:

DE = f ×DEold + (1− f)×m0 (3.3)

The sum of the weights of these measurements converges to 1 and we term this

Density Estimation Confidence (DEC). DEC is the confidence that a carrier has in its

estimate. It grows over time as the carrier gathers more and more measurements:

DEC =
k∑
i=0

(1− f)× f i → 1 (3.4)

RegReS adapts the value of the decay factor f to system parameters (node mobility,

region size, etc.). The adaptation is based on a regression model described in Section

3.3.4. This adaptation influences both the value ofDE (Equation 3.3) and the rate with

which carriers accumulate confidence (Equation 3.4) for their density estimates. As

shown in Section 3.5.1, adaptation is critical and offers RegReS improved performance

over a wide range of system configurations.

Carriers use SA packets to exchange DEs. SAs include a list of triplets <Node ID,

DE, DEC> that record along with the estimate (DE), its confidence (DEC) and also

the ID of the carrier node that had generated it (to detect and discard duplicates).

Carriers for each service maintain and exchange a log of size L of such entries. This

exchange helps carriers populate their logs with triplets from other carriers and forms

the basis of the collaborative density estimation scheme. A carrier uses the information

in this log (that includes its own estimate too) to build a more accurate estimate by

weighting the estimations (DE) using their confidences (DEC):

DEmerged =

∑L
i=1DEi ×DECi∑L

i=1DECi
(3.5)

88



As new triplets are received, only the L most confident ones are preserved. Log

entries are decayed at the end of each period, by multiplying their DEC by the decay

factor f . In this way, their effect in the averaging operation (Equation 3.5) is also

decayed to reflect their increasing staleness.

3.3.2 Spawn Policies: When to Spawn?

The service carriers are mobile and stay within the service’s region only for a limited

amount of time. In order to maintain the desired carrier density, new carriers need to

be spawned over time to replace carriers that exit. We propose and investigate three

alternative spawn policies:

Policy 1 (P1): Spawn if m0 < d. A carrier will spawn a new carrier whenever the

measurement it made over the last period indicates that the existing carrier density is

lower than the target value. Since carriers are highly mobile, their spatial distribution

changes all the time and several transient carrier clusters and dispersals are created

across the region. As a result, this spontaneous policy may end up overspawning

carriers.

Policy 2 (P2): Spawn if DEmerged < d. A carrier bases its spawn decision on the

merged density estimate it builds over time and not solely on the last measurement.

Regardless of how long the carrier has resided within the region, it will spawn a new

carrier whenever the value of its merged density estimate is less than the target density

of carriers.

Policy 3 (P3): Spawn if DEmerged < d and DEC ≥ Cthres. The very first

estimations that a carrier makes are not that accurate, as they are based on a limited

number of measurements and exchanges (if any) with other carriers. It takes time

for a carrier to build a more accurate and confident DEmerged. Therefore, a further

optimization enforces a confidence threshold (Cthres). A carrier will spawn only if its

DEC (as defined in Equation 3.4) exceeds the Cthres threshold.
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The confidence of a carrier’s merged density estimation (DEmerged) could also be

calculated based on the information in its log as DECmerged =
∑L

i=1DECi. This may

seem like a reasonable scheme, but, in reality, fails to preserve the service within the

region. The lower the existing carrier density (as a result of multiple carrier exits),

the more existing carriers need to spawn new carriers, but the lower the density,

the harder it is for existing carriers to encounter other carriers to populate their log

with estimation triplets and, hence, build a high enough merged confidence that will

allow them to spawn. Therefore, this confidence calculation scheme does not allow

carriers to build enough confidence when they need it the most. As a result, the

confidence of a carrier’s DEmerged is defined as in Equation 3.4 and grows as the carrier

spends more and more time in the region. Confidence grows sublinearly, though, as

old measurements are not as indicative as new ones. The rate at which confidence

increases depends also on the value of the decay factor f .

Spawn packets are unicast UDP packets that contain the service ID, version, region,

lifetime and data. The service data consist of service state as well as signed code

modules, should the newly spawned carrier not have the necessary modules to run the

service. The polygon that defines the geographic region of the service is described by

a set of <latitude, longitude> pairs.

3.3.3 Carrier Selection Criteria: On Whom to Spawn?

Given the high speed of vehicles, the number of distinct carriers needed to preserve the

desired density can be in the order of several thousands in our experimental scenarios.

Spawns can be reduced by accounting for node mobility and selecting as carriers only

nodes that will be staying within the region for more than a threshold amount of time.

The Estimated Residual Residence Time (ERRT) of a node, i.e., the estimated

amount of time left for which the node will be remaining within the region of the

specific service, depends on its current location, heading and speed. Carriers calculate
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the ERRT of encountered nodes using the <Speed, Heading, Longitude, Latitude>

information of the SA packets they receive. At the same time, carriers also calculate

the mean of these ERRTs across nodes; this is termed Nodes’ Mean Residual Residence

Time (NMRRT). The NMRRT is calculated over a time window. Only ERRTs from

SA packets sniffed over the last 10 cycles are included in the averaging process. In

this way, values that are very stale are ignored.

Our carrier selection criteria select as carriers only nodes whose ERRT is greater

than NMRTT by some factor. In Figure 3.1, for example, carrier C would only spawn

the service on node D, if necessary. Node E will be leaving the region very soon and

thus does not qualify to become a service carrier. Different carrier selection criteria

may have varying effects on the uniformness of the carrier distribution across the

region and we investigate this in Section 3.5.3.

3.3.4 Decay Factor Adaptation Model

A poorly chosen value for the decay factor can greatly impact the accuracy of the

collaborative density estimation scheme and thus the accurate maintenance of the

target density of service carriers. As Section 3.5.1 shows, a bad decay factor value

may lead to errors as high as 41%. In more extreme scenarios (e.g., of even higher

or lower node speeds), the error could become even higher. It thus becomes critical

to understand how the decay factor influences the density estimation scheme and,

subsequently, how its value should adapt to dynamic system factors.

The fact that the decay factor f greatly affects the performance of RegReS is

also evident from Equations 3.3-3.5. More specifically, a small decay factor yields

density estimates that are highly biased towards recent measurements while larger

decay factors place more emphasis on older measurements. Intuitively, when the rate

of change of carrier density (due to carrier exits and new carrier spawns) is high, newer

measurements are a lot more indicative of the actual current density compared to
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older ones and thus the decay factor should be smaller. Conversely, when the rate

of change of carrier density is low, older measurements reflect the current density of

carriers almost as well as the most recent ones, and the decay factor should be larger.

Opportunistic networks, in general, and vehicular networks, in particular, are

highly dynamic and, hence, a model is needed for automatically adapting the decay

factor to system dynamics. As Section 3.5.1 shows, an accurate carrier density can be

maintained only if the decay factor adapts to node mobility or region size changes3.

Intuitively, these two factors determine the rate of changes as the faster nodes move or

the smaller the region size, the faster existing carriers exit the region and new carriers

need to get spawned. Conversely, for small speeds (or big regions), the rate of changes

is lower.

As the basis of our adaptation model, and in order to track the rate of change,

we choose the Carrier Mean Residence Time (CMRT) metric. The CMRT is the

average amount of time that carriers reside within the region and we use it to derive a

regression-based model for f . Carriers estimate and update the value of CMRT using

the information in the SA packets received from other carriers. The carrier (past)

Residence Time, as included in the SA packets, is added to the calculated (future)

ERRT time to estimate the total residence time for each encountered carrier. The

total residence times of the carriers are then averaged using a simple arithmetic mean

over a time window to form CMRT. Only values from SA packets sniffed over the last

10 cycles are included in the averaging process. Armed with CMRT, nodes then use

the regression model to select the decay factor f they should use for DE and DEC

calculations.
3We found that other system parameters like regional node population (Figure 3.4) or target

density of carriers (Figure 3.7) do not affect the performance of the estimation scheme.
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Figure 3.3: Regression model for adaptation of decay factor f to different
system configurations. The data points for different node speeds and ser-
vice region sizes correspond to the configurations of Figures 3.5 and 3.6,
respectively.

In Figure 3.3, we plot the values of the best4 decay factor against CMRT for the

configurations of variable speed of Figure 3.5 and the configurations of variable region

size of Figure 3.6. Figure 3.3 also shows the regression-based approximation model

that RegReS uses to adapt its density estimation scheme as a function of CMRT.

The adaptation model is based on 9-th order polynomial regression. We found that

higher orders or non-polynomial kernels do not improve the approximation accuracy

significantly. Therefore, using the approximation of Figure 3.3, the best value for

the decay factor can be determined for arbitrary configurations by only knowing the

CMRT.

While our regression model is developed based on Random Waypoint (RWP)

mobility model, our results in Section 3.5.1 show that the model is general and works

effectively with real bus traffic traces as well.
4Ideally, the carrier density should always equal the target value. Thus, the error metric that

RegReS seeks to minimize is the density mean absolute error calculated as the absolute differences
between the actual density of carriers and the target density at each period, averaged over the
duration of the experiments (360 periods). The best decay factor is the one that minimizes this error.
An alternative error metric would be to penalize negative errors (actual density less than target)
more than positive ones (actual density more than the target).
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3.4 Methodology

This section describes the testbed and the mobility models that we used for the

evaluation of RegReS.

3.4.1 Testbed

For the evaluation of RegReS , we prototyped a real system on the ORBIT5 radio

grid testbed [118] that provides a facility of 400 wireless Debian 4.1 nodes. For our

experiments, we used up to 350 of these nodes configuring their Atheros AR5002X

Mini PCI cards in 802.11a ad-hoc demo mode. The radio range was 250m and mobility

was emulated by filtering out packets from nodes whose virtual distance was greater

than this. Table 3.2 shows the default parameter values. Packet loss rate was in the

range of 1-4%.

3.4.2 Mobility Models

We used two mobility models to evaluate the performance of RegReS:

1. Random Waypoint (RWP): The entry point of the nodes into the region is

uniformly at random chosen on the border of the region. RWP then determines the

travel path of the nodes. Node speeds are uniformly distributed in the range of 5m/s

to 15m/s to emulate vehicular traffic. When a node crosses the region’s border, the

node is considered to have exited and thus removes the services (if any) it is carrying.

2. City Bus Traces (CBT) [66]: Bus traces from a 2216m× 2216m region exactly

north of University of Washington were used. These traces capture only buses, so to

better approximate the complete vehicular city traffic, we created a higher vehicular

density scenario by compressing traces from different hours of the day into a single
5The ORBIT testbed offers improved evaluation credibility compared to standard simulation

environments [118].
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Table 3.2: Default experiment parameters. For region sizes R ≥ 3133m, we
use all available ORBIT nodes (N=350) and set d=1. This decay factor
value (f=0.86) yields the most accurate density estimations, i.e., minimizes
the density mean estimation error for the default configuration. The value
of Cthres was determined empirically to minimize density mean absolute
error for P3. Further increasing the size of the log does not yield significant
benefits. Density estimation results for different log sizes or decay factors
are not shown in the interest of space.

Region size 2216m× 2216m
Regional node population N=200 nodes
Decay factor f=0.86
Mobility model RWP: speeds in [5, 15] m/s
Spawn policy P3, Cthres=0.6
Carrier selection criterion random
Estimation log size L=4
Radio range R=250m
Target carrier density d=4
SA packets period P=10sec
Experiment duration 1 hour (360 periods)
PAS service (Section 3.5.4) spawn size 20KB

one-hour-long trace. Traces of buses for different hours of the day were treated as

traces of different buses moving in the single hour of the experiment.

3.5 Evaluation

In this section, we evaluate the ability of RegReS to maintain the target density of

service carriers across the design space and for different system parameters. We also

evaluate the performance benefits that RegReS offers as compared to a standard

epidemic scheme. Finally, we demonstrate RegReS with a small-scale deployment

using PAS.
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3.5.1 Achieving Target Density

We evaluate how well RegReS maintains the target density of carriers against several

baselines:

• Prob: This is a standard probabilistic spawning scheme [88, 102, 157]. The

value of the spawn probability (p=0.0016) was empirically optimized for the default

configuration.

• Static Decay Factor (SDF): As opposed to RegReS, the decay factor of this

collaborative density-estimation-based scheme is static (does not adapt) and its value

(f=0.86) was empirically optimized for the default configuration.

• Best Decay Factor (BDF): The best decay factor for each configuration is

determined empirically and used.

• Oracle: This is a hypothetical scheme. Every P=10 sec, the oracle, knowing

exactly how many carriers are missing, makes the necessary spawns.

Random Waypoint Mobility

In order to provide a thorough evaluation and at the same time show the importance

of adaptation, we compare the performance4 of these schemes across different system

configurations by varying one parameter at a time: 1) regional node population in

Figure 3.4, 2) node speed in Figure 3.5, 3) region size in Figure 3.6, and 4) target

density of carriers in Figure 3.76.

As shown in Figures 3.4 - 3.7, RegReS significantly outperforms Prob and SDF

schemes in most scenarios. RegReS is able to adapt to varying system parameters,

maintaining the targeted carrier density with less than 16% density mean absolute

error and 9% mean raw error. These errors are higher compared to those for the
6Values of decay factor for BDF shown on top of each bar. Note that some Prob errors exceed the

maximum value (50%) of the y-axis. Carrier density fluctuated over time for all evaluated schemes.
More specifically for RegReS, the standard deviation of the carrier density is within 14% of the target
carrier density.
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Figure 3.4: RegReS evaluation using RWP for different node populations6.
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Figure 3.5: RegReS evaluation using RWP for different node speeds6.
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Figure 3.6: RegReS evaluation using RWP for different region sizes6.
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Figure 3.7: RegReS evaluation using RWP for different target carrier den-
sities6.
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theoretical oracle scheme; carriers in RegReS make spawn decisions based on the

limited information they collaboratively measure and exchange, without having global

knowledge for the regional density. Still collaboration helps keep the errors small

enough for geo-locality services that typically do not need hard guarantees. Further-

more, the performance of RegReS is very close (within 3%) to that of BDF across all

configurations. For the configurations of Figures 3.4 and 3.7, SDF happens to use the

best decay factor and, hence, matches the performance of BDF; the value of the best

decay factor is only affected by node speed and region size as only these parameters

influence the rate of carrier density changes. Prob is affected by changes in any of

these four parameters.

This analysis suggests that static schemes like Prob and SDF are very weak

at maintaining a target service capacity and RegReS’s adaptivity is critical. An

adaptive estimation scheme like that proposed by RegReS should be used in dynamic

environments whether the ultimate goal is request routing, power management or

service replication.

RegReS, by maintaining an accurate target density through its lightweight collabo-

rative density estimation scheme and spawning only as many carriers as needed, can

result is significant overhead savings. As Section 3.5.2 shows, the total communication

overhead for RegReS, as compared to Prob and epidemic push-based schemes, is

reduced by several multiples.

City Bus Traces Mobility

The density mean absolute errors4, for CBT mobility and across different target carrier

densities, are shown in Figure 3.8. The desired carrier density for most geo-locality

services (e.g., SignalGuru) is expected to be d ≥4. In busy cities, such a density

corresponds to a tiny fraction of the regional mobile devices. For such densities,

RegReS can maintain the desired density of carriers with less than 16% mean absolute
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Figure 3.8: RegReS Evaluation using CBT for different target carrier den-
sities.

error and 10% mean raw error (not shown in the interest of space). These errors are

within 3% of those for BDF.

The schemes that are based on collaborative density estimation (SDF, BDF,

RegReS) do not perform as well when very low target carrier densities are combined

with CBT mobility. When node movement is highly correlated (CBT mobility), density

estimation-based schemes need a high enough density of collaborating carriers to be

able to build an accurate density estimate and robustly sustain clustered carrier exits.

In contrast with RWP model, even a density of d=0.5 can be sustained.

The bus traces that we used constitute one of the hardest possible cases for RegReS.

If the scenario were true instead, where all types of nodes (vehicles) were used and

many more streets were traversed, nodes would be mingling better. As a result, the

performance of RegReS for CBT would be closer to that for RWP.

3.5.2 Performance Benefits: RegReS vs. Epidemic

In this section, we evaluate the performance benefits that RegReS can offer when

compared to a standard push-based epidemic scheme. As discussed, pull-based
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epidemic schemes or schemes based on probabilistic spawning cannot ensure that the

desired density will be maintained and will often end up with too few carriers. To

evaluate the performance benefits of RegReS, we use our Parking Availability Service

(PAS). PAS is described in Section 3.5.4.

Evaluation Metrics

The performance metrics that we use to compare the two schemes are:

1) Total number of spawns: Reflects aggregate regional resources (computation,

memory, communication) spent for maintaining the target carrier density.

2) Communication bandwidth: Includes both spawns (20KB for PAS), service

requests (66 bytes), responses (20KB for PAS) and periodic SA packets (110 bytes).

Apart from communication savings, this also reflects energy savings if RegReS is

running on energy-constrained devices, given that wireless network interfaces are

major energy drains.

3) Mean number of hops to reach a carrier (service access latency):

Unlike standard push-based epidemic schemes, RegReS does not proactively push the

service on all nodes, and requestors have to contact a nearby service carrier. This

metric reflects the delay involved for requestors to receive the service over potentially

multiple hops. While the delay per hop depends on the load of the wireless channel, a

single hop could involve delay below 30ms over 802.11a.

Results Discussion

We studied target carrier densities of d ∈ {1, 2, 4, 8} for different node populations of

n ∈ {25, 153, 200, 350, 1000} within the region. For n=1000 results are extrapolated

based on experimental results for lower values of n, as ORBIT does not offer that

many nodes.
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Number of spawns. The savings that RegReS can provide in terms of total

number of spawns are shown in Figure 3.9(a). The denser the region in terms of

nodes and the smaller the desired carrier density the bigger the savings that RegReS

provides. When n=25, the regional node population is very small and all schemes

will have the same behavior and spawn them all; a density of d=1 corresponds to 25

carriers within a 2216m× 2216m region.

Communication bandwidth. RegReS, as shown in Figures 3.9(b) and (c), also

helps save on total communication bandwidth. The total communication incurred

depends primarily on the fraction of the nodes that get spawned or request the service

(as the periodic SA packets are very small). The smaller the fraction of service

requestors, the greater the savings that RegReS provides. The relative savings in the

case of Figure 3.9(c) are higher than the ones in Figure 3.9(b). However, RegReS,

even in the case of one third of the regional nodes requesting the service, can reduce

the necessary communication by a factor of 2.3× (n=153).

The greater the population of nodes in the region, the greater the savings that

RegReS can provide for a certain targeted carrier density as compared to the epidemic

scheme. However, unlike the case of the total number of spawns metric, targeting

a smaller carrier density does not always result in communication savings. Higher

densities, as shown in Figure 3.10, provide higher guarantees of requestors finding

the service locally and avoiding multiple hops to reach a carrier, thus reducing total

communication. For most geo-locality services though, expected carrier densities, as

dictated by the required sensing capacity, will be d � 1 [94], making the need for

multiple hops very rare.

Hops to reach a carrier (service access latency): In Figure 3.10, the average

number of hops that a requestor needs to make to receive the service is shown for

the different carrier densities and mobility schemes. Due to high node mobility, the

spatial distribution of carriers changes all the time, creating several transient carrier
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Figure 3.9: Total number of spawns (a), total number of bytes communicated
when one third (b) and one tenth (c) of the nodes request PAS.
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Figure 3.10: Average number of hops needed to receive service from a Re-
gReS carrier.

dispersals and clusters across the region. The higher the carrier density though, the

higher the probability that a requestor will receive the service from a carrier within its

range and thus the smaller the average hop count. Almost never in the experimental

scenarios did nodes have to traverse more than one hop. Hence, an average hop count

of 0.05 (RWP, d=4) could be interpreted as "in ∼5% of the cases, a requestor needs

to do one extra hop to receive the service and in ∼95% of them, there is a carrier in

its range."

Furthermore, hop count is smaller for RWP when compared to CBT; strong

movement correlation in the bus traces can lead to a lack of carriers within a node’s

range (carrier dispersals are more frequent), requiring hops to access a service. However,

even in the case of real traces, the average hop count is quite small, allowing RegReS

to provide significant savings both in terms of total number of spawns as well as

communication, without incurring significant delays in the reception of a service.
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Figure 3.11: Estimation error for different decay factors (a), log sizes(b).

3.5.3 Density-Based Carrier Maintenance: Design Space Ex-

ploration

In this section, we evaluate the performance of RegReS when varying different design

parameters.

Density estimation

Accurate estimation of the existing density of service carriers is critical in order to

correctly guide spawning decisions and thus accurately maintain the target density of

service carriers.

Here, we first evaluate the effect that f , the decay factor, has on the accuracy of

the density estimation scheme. Figure 3.11(a) shows the estimation mean absolute

error. This is calculated as the absolute errors of carrier merged density estimations

(DEmerged) compared to the real density at each point in time, averaged across all

carriers and all periods of the experiment. As shown here, the performance of the

estimation scheme is greatly affected by the value of the decay factor. For our default

configuration, a decay factor of f=0.86 gives the most accurate estimations with less

than 18% mean absolute estimation error.
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In Figure 3.11(b), we show the benefits of the collaborative density estimation

scheme for various estimation log sizes. When no collaboration is used (L=0) and

carriers estimate density solely based on their own measurements, the estimation mean

absolute error across all carriers is 30%. With collaboration, this error almost halves,

dropping to 18%. RegReS uses a log size of L=4, where the four most confident

triplets are preserved and exchanged. Larger log sizes result in little improvement in

accuracy.

Spawn policies

In order to maintain an accurate density of service carriers, spawning decisions should

be made judiciously. We evaluate how well the three spawn policies can maintain the

target density. Figure 3.12 shows the density mean raw and absolute errors. The best

spawn policy is P3 with a density mean absolute error of 10%. The mean raw error is

even lower (8%). As discussed in Section 3.3.2, spawn policy P1 is highly spontaneous

and thus ends up overspawning, leading to a density of carriers significantly higher

than the target one (64% higher). Policy P2 is not as spontaneous as P1, but still not

as measured in its spawn decisions as P3, as it spawns regardless of confidence. We,

hence, pick P3 as RegReS’s default spawn policy.

Carrier Selection Criteria

Smarter carrier selection criteria may drastically reduce the number of spawns necessary

for the maintenance of a service across its lifetime. However, carrier selection criteria

that impose too strict constraints that nodes need to satisfy to become carriers,

may negatively impact the accurate maintenance of the target density of service

carriers. The benefits and drawbacks of the following three carrier selection criteria

are evaluated:

• C1: ERRT > NMRRT
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Figure 3.12: Spawn policy evaluation.

• C2: ERRT > 1.5×NMRRT

• C3: ERRT > 2×NMRRT

The number of spawns for these three criteria and the random carrier selection

baseline for different node speed scenarios is shown in Figure 3.13(a). The top of each

bar shows the factor by which the number of spawns is decreased compared to the

random selection baseline of the same speed.

Figure 3.13(a) shows that the number of spawns can be greatly reduced by enforcing

such smarter carrier selection criteria. C1, C2 and C3 reduce the number of spawns by

factors of 1.3 to 1.4, 1.5 to 1.7 and 2.3 to 2.9, respectively, depending on node speed.

Furthermore, Figure 3.13(b) shows that the more relaxed carrier selection criteria C1

and C2 do not hurt the carrier density maintenance as opposed to C3. C3 imposes

strict constraints that nodes need to satisfy to become carriers. Therefore, existing

carriers have a hard time finding eligible nodes and end up underspawning. The

only exception is the case where speeds are not the same across nodes, but uniformly

distributed in the range of 5m/s - 15m/s. In this case, there is more diversity among

nodes and, thus, carriers can easily find eligible nodes to spawn.
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Figure 3.13: Carrier selection criteria evaluation: Number of spawns (a),
density mean absolute error (b), density mean absolute spatial error (c).
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The smarter carrier selection criteria C1, C2 and C3 may hurt the uniformness of

the carrier distribution. To evaluate that, we use the density mean absolute spatial

error metric. This is calculated by taking at each period a grid of 110× 110 sampling

points across the region and calculating for each gridpoint the absolute difference

between the actual carrier density and the target one. These absolute differences are

then averaged across all sampling points and all periods of the experiment to calculate

the density mean absolute spatial error.

Figure 3.13(c) plots the density mean absolute spatial error for the four carrier

selection criteria. According to Figure 3.13(c), C1 increases the density mean absolute

spatial error at most by 3%, making it a very promising criterion to get savings without

significant carrier distribution degradation. For C2, this error can be at most 10%

and C3 may make this error even double compared to the random selection baseline.

The stricter criteria select nodes that stay longer in the region. These tend to

be nodes that traverse the region mostly diagonally and/or pass close to the center.

Therefore, the stricter carrier selection criteria tend to accumulate more carriers

towards the center of the region and less close to the edges making the distribution of

carriers less uniform.

As our analysis showed, smarter but not too strict carrier selection criteria may

significantly reduce the number of spawns with only a minor degradation in the

uniformness of the service carrier distribution. Spawns may be big in size, depending

on the service. Carrier spawns are only 20KB for PAS, but could be up to 7.6MB for

SignalGuru. Smarter carrier selection criteria can thus also significantly reduce the

required communication bandwidth and energy.
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3.5.4 Sample Application: Parking Availability Service De-

ployment

Previously proposed smart parking applications depend on the existence of smart

parking meter infrastructure [19] or other special onboard sensors [98]. To illustrate

the potential of our grassroots platform, we developed a Parking Availability Service

(PAS) that does not require any additional infrastructure or hardware beyond a GPS

device and vehicle-to-vehicle communications.

When a vehicle moves out of a parking spot, it broadcasts the release of the specific

spot with a <Latitude, Longitude, RT> triplet. The latitude and longitude constitute

the geographic location of the released spot, and RT is the Release Timestamp, i.e.,

the time that the vehicle released the spot. The release of the parking spot is detected

as a combination of the vehicle engine switching on and the vehicle gaining a speed of

over 5km/h. The former is detected with the use of a power inverter and the latter

with speed information from the GPS receiver. This by no means constitutes a robust

parking release detection scheme and needs further refinement.

PAS service carriers maintain a list of <Latitude, Longitude, RT> triplet entries

for available spots. These entries are obtained either from vehicles while releasing

parking spots or from other PAS service carriers via the epidemic service updates

mechanism. An upper limit N is set on the number of entries and the most recent

entries (based on time elapsed since the parking spot was released) are kept.

To demonstrate PAS and the ability of RegReS to maintain such a grassroots

geo-locality service, we carried out a five-node deployment using Ubuntu 8.04 laptops

(four Dell Latitude D610 and one IBM Thinkpad x40) equipped with Globalsat BU-353

GPS receivers and 802.11g interfaces. The setup is shown in Figure 3.14. Three of the

laptops were carried by humans and the other two were mounted on vehicles. The

region was defined to be a 200 meter-long road segment and participants were asked
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Figure 3.14: Parking Availability Service Deployment.

to move freely in and out. Unlike [98], our PAS is a very small-scale single-street

deployment.

The service was maintained for 20 minutes using on average 2.7 carriers when the

specified target density was set to three carriers within the region. To maintain this

density, RegReS performed 53 spawns in total as a result of carrier exits from our

small deployment area; carriers removed the service after exiting. A parking release

event was also triggered after the first five minutes of the experiment. The information

about the released parking spot was received by the other two carriers that were in

the region at that point in time and maintained as part of the service. Two parking

availability requests were also made and served in less than 30ms.

Our PAS is a simple example that demonstrates the potential of RegReS-enabled

geo-locality services. RegReS-enabled PAS service carriers maintain the information

about released parking spots within the region of interest and provide the information

instantaneously upon request to interested nodes over fast short-range communications.
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In this way, service access latency is significantly reduced (less than 30ms, as opposed

to several seconds over 3G) and the use of the costly, scarce and potentially unavailable

long-range communications is avoided.

3.6 Conclusions

To completely alleviate the dependence of geo-locality services on cloud infrastructure

and long-range communications, this chapter presented the RegReS middleware. The

RegReS middleware enables the full hosting of geo-locality services on confederations

of mobile devices that collaborate and serve requests over fast short-range ad hoc

communications. In this way, RegReS obviates the need for costly and slow long-

range communications. Unlike previously proposed schemes for geo-locality service

maintenance, RegReS allows services to specify not only their region and lifetime but

also their desired carrier density. In this way, RegReS engages only as many nodes as

specified in the provision of a service and avoids wasting the increased, yet constrained,

resources of mobile devices.

To ensure accurate service carrier density maintenance in highly dynamic and

unreliable environments, RegReS employs a fully-distributed collaborative scheme.

Service carriers opportunistically collaborate to estimate the current service density

and spawn additional carriers, where necessary, directed by a confidence-based policy.

Thanks to collaboration, RegReS carriers make twice as accurate density estimations.

Collaboration is thus very important in highly dynamic and unreliable environments.

At the same time, RegReS adapts to different system parameters by using the

CMRT metric as a proxy for system dynamics. By adapting to system dynamics,

RegReS manages to effectively maintain the required service density across a wide

range of environments with less than 10% mean raw error and 16% mean absolute
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error. As our results show, without adaptation, both errors could be arbitrarily high,

up to 41%. Thus, adaptation too is critical in highly volatile mobile environments.

Being able to maintain an accurate target density of service carriers in a fully-

distributed and lightweight approach, RegReS constitutes an efficient foundation for

low- or even zero-infrastructure geo-locality services in mobile ad hoc networks. Our

PAS constitutes a simple example that demonstrates the benefits of RegReS-enabled

geo-locality services. As an example of a more challenging service that can demonstrate

the high capabilities of collaborative computing platforms like RegReS, the next section

describes SignalGuru, a collaborative traffic signal schedule advisory service.
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Chapter 4

Camera-based Geo-locality Services:

SignalGuru

The previous chapter presented RegReS, a middleware that enables the hosting of

geo-locality services on confederations of collaborating mobile devices. In this chapter,

to demonstrate the potential of collaborative mobile device-based computing platforms

enabled by middleware like RegReS, we describe several novel services that they can

support. More specifically, we focus on novel smartphone camera-based services that

are most challenging because of the increased computational resources (e.g., CPU

for image processing) that they necessitate. This chapter explores the challenges

faced when building smartphone camera-based geo-locality services and showcases

SignalGuru, a novel traffic signal schedule advisory service. The example of SignalGuru

demonstrates that with collaboration, adaptation and by leveraging other capabilities

of smartphones (e.g., accelerometer and gyro), even challenging camera-based services

can be fully supported on confederations of mobile devices without the need for cloud

servers and costly long-range communications to reach them.
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4.1 Introduction

With an ever richer set of sensors, higher computational power and greater popularity,

smartphones have become a major collaborative sensing platform. In particular,

smartphones have been widely used to sense their environment and provide services to

assist drivers. Several systems have been proposed that leverage smartphones’ GPS,

accelerometer and gyro sensors in order to estimate traffic conditions [55, 99, 145],

detect road abnormalities [99] and compute fuel-efficient routes [44].

Cameras, in contrast to other smartphone sensors, have so far been underutilized

for automated collaborative sensing. Cameras have been used only for a handful

participatory sensing systems; both image capture and image analysis are performed

by a human user. Such applications include the monitoring of vegetation, garbage,

and campus assets [120]. In all these services, the user needs to point his smartphone

camera to the target object, capture an image and upload it to the central service

where a human operator analyzes it. The proposal of collaborative sensing services

that leverage smartphone cameras without manual user effort has so far been hindered

by two false beliefs: 1) the view of smartphone cameras is always obstructed (carried

in pockets or placed flat on the table) and 2) image processing requirements are

prohibitively high for resource-constrained mobile devices.

In this chapter, we propose a novel collaborative sensing platform that is based on

the cameras of windshield-mounted smartphones. We show that near real-time and

accurate camera-based services are possible on confederations of such mobile devices.

Several drivers are already placing their phones on the windshield in order to use

existing popular services like navigation. Once a phone is placed on the windshield, its

camera faces the road ahead. Our proposed sensing platform leverages these cameras

to opportunistically capture content-rich images of the road and the environment

ahead. Inter-device collaboration is also leveraged to gather more visual road-resident

information and distill it into knowledge (services) that can be provided to the drivers.
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With their cameras, a network of collaborating windshield mounted smartphones can

enable a rich set of novel services.

More specifically, in this chapter, we focus on the description and evaluation of

the SignalGuru service [85]. SignalGuru leverages the cameras of windshield-mounted

smartphones in order to detect traffic signals ahead and predict their future schedule.

SignalGuru devices collaborate with other regional devices in order to mutually improve

their historic traffic signal status information and better predict when the signal ahead

will turn green/red.

Besides the challenges for RegReS-enabled geo-locality services mentioned in

Section 3.2.1, providing real-time camera-based services, like SignalGuru, on top

of a confederation of collaborating windshield-mounted smartphones poses several

additional challenges that need to be tackled:

1. Commodity cameras: The quality of smartphones’ cameras is significantly lower

than that of high-end specialized cameras used in computer vision and au-

tonomous navigation. Smartphone cameras have both lower color quality and

lower resolution. Further, as the capturing of still images is very slow (1-2

seconds) on an iPhone 3GS device, video frames should often be used instead for

low-overhead and high-frequency image-based detection. This further degrades

resolution, as video resolution is only up to 640×480 pixels for iPhone 3GS and

1280×720 pixels for iPhone 4 devices.

2. Limited processing power: Processing video frames to detect visual information

takes significant computational resources. In SignalGuru, traffic signal detection

is the most compute-intensive task. A traffic signal detection algorithm that

runs on resource-constrained smartphones must be lightweight so that video

frames can still be processed at high frequencies. The higher the processing

frequency, the more accurately SignalGuru can measure the duration of traffic

signal phases and the time of their status transitions.
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3. Uncontrolled environment composition and false detections: Windshield-mounted

smartphones capture the real world while moving. As a result, there is no control

over the composition of the content captured by their video cameras. Results from

one of our deployments suggest that the camera-based traffic signal detection

algorithm can confuse various objects for traffic signals and falsely detect traffic

signal colors. A misdetection rate of 4.5% can corrupt up to 100% of traffic signal

predictions. Schemes need to be devised to carefully filter noisy image-based

object detections.

4. Variable ambient light conditions: Still image and video capture are significantly

affected by the amount of ambient light that depends on both the time of the day

and the prevailing weather conditions. By adjusting the camera exposure time

to the fixed luminous intensity of traffic signals, SignalGuru robustly detects

traffic signals regardless of the prevailing ambient light conditions.

5. Need for collaboration: The visual information that an individual smartphone

senses is limited to its camera’s view angle. Regional smartphones thus need

to collaborate in order to increase their information reach. In the SignalGuru

service, for example, a device may not be able to see a far-away traffic signal,

or may not be within view of the traffic signal for a long enough stretch of

time. Collaboration is needed between vehicles in the vicinity (even those on

intersecting roads) so that devices have enough information to be able to predict

the schedule of traffic signals. Collaboration is also needed in order to maintain

SignalGuru’s data over time and in a distributed fashion within the vehicular

network. This last challenge is tackled by collaborative middleware like RegReS.

It should be noted that we do not consider battery lifetime as a major challenge.

Mobile phones can be plugged into the ample energy resources of a vehicle. In cases

where this does not hold, approaches proposed for lifetime maximization in sensor

networks [75, 156] can be used. Such approaches can determine if and when a given
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device needs to perform certain power-hungry tasks (e.g., SignalGuru traffic signal

detection, collaboration with wireless communication).

The research in this chapter makes three major general contributions and a more

specific one:

1. RegReS services: The example of SignalGuru illustrates the potential of

smartphone-based collaborative computing platforms that are enabled by

middleware like RegReS. It demonstrates that such platforms can fully support

a rich set of services, including challenging and computationally intensive

camera-based services, without the need for cloud servers and costly long-range

communications to them. Besides SignalGuru, the potential of four more novel

services is discussed.

2. Collaboration and adaptation: The case of SignalGuru highlights the importance

of both collaboration and adaptation for grassroots RegReS services. With

collaboration and adaptive Support Vector Regression (SVR) models, not only

pre-timed but also state-of-the-art traffic-adaptive traffic signals can be predicted

with very small mean absolute error (2.45s). Collaboration reduces the error by

78% and adaptation by an additional 25%.

3. Leveraging mobile device capabilities: We show that networks of windshield-

mounted smartphones can greatly increase their camera-based sensing frequency

and accuracy by fusing information from the smartphone’s Inertial Measurement

Unit (IMU) to reduce the video area that needs processing. Our IMU-based

detection window halves both the processing time and the misdetection rate for

SignalGuru. We also propose and evaluate low-pass filtering and a colocation

filter that effectively filter away false positive event (e.g., traffic signal transition)

detections. Thanks to these proposed approaches, camera-based services like Sig-

nalGuru become both computationally tractable and accurate on confederations

of commodity smartphones.

118



4. SignalGuru benefits: We propose five user-focused applications that can be

built on top of SignalGuru. These applications can help drivers reduce their

fuel consumption, environmental impact and travel time. In particular, our

SignalGuru-enabled Green Light Optimal Speed Advisory (GLOSA) application

offers speed advisories to avoid undue stops and waits at red lights. Testing

this system using an onboard fuel efficiency monitor, we show that when drivers

follow the advisory of our GLOSA system, 20.3% fuel savings can be achieved.

In the next sections, we describe SignalGuru in detail. In Section 4.2, we present

the motivation behind SignalGuru and in Section 4.3, the SignalGuru-enabled GLOSA

application. Section 4.4 describes the operation of traffic signals and Section 4.5

the architecture of our collaborative SignalGuru service. In Section 4.6, we present

our experimental methodology and in Section 4.7, we evaluate the performance of

SignalGuru’s individual modules based on our two real-world deployments. Section

4.8 discusses the operation of SignalGuru in complex intersections. In Section 4.9, we

discuss four more applications, in addition to GLOSA, that are enabled by SignalGuru’s

traffic signal schedule predictions. Besides SignalGuru and its enabled applications,

Section 4.10 describes four more services that windshield-mounted smartphones could

support and discusses their challenges. Lastly, Section 4.11 surveys related work.

4.2 SignalGuru Motivation

With more than 272,000 traffic signals in major intersections of the USA alone [79],

our daily driving experience is significantly influenced by them. Traffic signals are

widespread in developed countries as they allow competing flows of traffic to safely

cross busy intersections. Traffic signals, however, do take their toll. The stop-and-go

movement pattern that they impose increases fuel consumption by 17% [5], CO2
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emissions by 15% [5], causes congestion [21], and leads to increased driver frustration

[79].

Drivers can be assisted with a GLOSA system [5, 149]. A GLOSA system advises

drivers on the optimal speed they should maintain when heading towards a signalized

intersection. Should drivers maintain this speed, then the traffic signal will be green

when they reach the intersection, allowing the driver to cruise through.

Worldwide, only a handful of GLOSA systems have been deployed [149], and

have so far been based on roadside message signs (wired to traffic signals). These

signs are placed a few hundred meters away from the signal and display the optimal

speed drivers should maintain. Their costly and often impractical deployment and

maintenance, however, has hindered their widespread usage.

Countdown timers at vehicular traffic signals constitute another alternative ap-

proach to assist drivers; digital timers next to the traffic signal display the time till

the signal changes from red to green and vice versa. Such traffic signals are deployed

only in a few cities around the world. The cost of updating existing traffic signals to

include such timers has hindered their widespread deployment.

Countdown timers for pedestrian traffic signals are much more common in the

USA and the rest of the world, and drivers can sometimes use these to infer when the

light will turn green. However, very often these are not visible from far away but only

after one has reached the intersection. At that time, it is too late for drivers to adapt

their speed and so they need anyway to come to a complete halt. Furthermore, at

some intersections, it is not easy or even possible for the driver to infer the time the

signal will switch; the intersection may have a complex phase schedule and the green

light for the driver may not come straight after some pedestrian timer counts down to

zero.

US and European transportation agencies recognize the importance of GLOSA

and access to traffic signal schedules, and thus have advocated for the integration
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of short-range (DSRC) antennas into traffic signals as part of their long-term vision

[21, 123]. DSRC-enabled traffic signals will be able to broadcast in a timely fashion

their schedule to DSRC-enabled vehicles that are in range. Audi recently prototyped a

small-scale DSRC-based GLOSA system for 25 traffic signals in Ingolstadt (Germany)

[5]. The widespread deployment of such an approach, however, has been hindered by

the significant cost to equip traffic signals and vehicles with the necessary specialized

computational and wireless communications infrastructure.

In this work, we take an infrastructure-less approach, demonstrating that the

proposed collaborative platform of windshield-mounted smartphones and their cameras

can be leveraged to access traffic signal schedules. Windshield-mounted smartphones

use their cameras to detect and determine the current status of traffic signals. Multiple

phones in the vicinity use opportunistic ad-hoc communications to collaboratively

learn the timing patterns of traffic signals and predict their schedule. SignalGuru’s

predicted traffic signal schedule then enables GLOSA and other possible applications

on the phone.

4.3 SignalGuru Applications: GLOSA

The goal of the GLOSA application is to advise drivers on the optimal speed they

should maintain so that the signal is green when they arrive at the next intersection.

In this way, the driver can cruise through the intersection without stopping. A GLOSA

application can offer several benefits, such as 1) decreased fuel consumption [5], 2)

smoothed and increased traffic flow (stop-and-go patterns avoided) [21], and as a

result of these, 3) decreased environmental impact [5].

A GLOSA application needs four pieces of information in order to calculate the

optimal speed: 1) the residual amount of time till the traffic signal ahead turns green,

2) the intersection’s (stop line) location, 3) the vehicle’s current location, and 4) the
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queue length of the traffic signal ahead. The first is provided by SignalGuru, the second

by map information [110] and the third by the available localization mechanisms on the

mobile device (e.g., GPS). The traffic signal queue length can be estimated by fusing

information about the number and positions of vehicles in the queue as described in

[30]. Then the time it takes for the queue ahead to discharge can be calculated as a

function of the queue length [79].

If no traffic signal queue length information is available, and when vehicles are

very close (<100m) to the intersection, GLOSA should switch from a speed advisory

to a time countdown (till the signal ahead turns green). Drivers can then look at the

queue length ahead and manually estimate their optimal speed.

Although GLOSA may often advise a vehicle to reduce its speed, the vehicle’s

total travel time will not be increased. On the contrary, it may get decreased. Despite

the speed reduction, a GLOSA-enabled vehicle will still travel through the intersection

at the same traffic signal phase as it would if it were traveling at its regular speed.

Moreover, at the time the signal turns green, a GLOSA-enabled vehicle will be cruising

through the intersection with an initial non-zero speed, as opposed to a regular vehicle

that would have to start from a complete halt. Therefore, GLOSA may improve an

individual vehicle’s travel time.

GLOSA also improves the overall flow reducing congestion. The traffic flow is

smoother and faster when vehicles are cruising through the intersections as opposed

to when they come to a complete halt and then slowly accelerate one after the other

to cross the intersection. Traffic flow improvements then lead to further gas and travel

time savings.

The larger the available lead-up time, i.e., the amount of time in advance at which

predictions are available, the more effective GLOSA is. Predictions that are available

say 20 seconds in advance, while the driver is perhaps 250m from the traffic light,

provide enough room to control the vehicles’ speed. The prediction accuracy should
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be less than 10% of a traffic signal phase length to avoid wasting precious green time

(e.g., not guiding a vehicle to the intersection long after the light has switched to

green).

Besides GLOSA, SignalGuru’s traffic signal schedule predictions can be used to

enable more applications to help drivers reduce fuel consumption, reduce environmental

impact, reduce travel time and increase safety. Four such additional applications are

described in Section 4.9.

4.4 Traffic Signal Background

In signalized intersections, different but non-conflicting (safe to co-exist) vehicular and

pedestrian movements are grouped together to run at the same time. Such groups of

movements are termed phases. Figure 4.1 shows a typical simple intersection with

two phases. When the light is green for phase A, vehicles or pedestrians moving

North-South can safely move at the same time. Later the traffic signal will turn red

for phase A and green for phase B. At this time, vehicles and pedestrians moving

East-West can go. When this phase completes, the intersection has completed one

cycle and the light will turn red again for phase B and green for phase A. Many

intersections may have more than two phases. The amount of time that the light stays

green in a given phase is phase length. The sum of all phase lengths of an intersection

is cycle length.

Most traffic signals in the US are pre-timed traffic signals [122]. For pre-timed

traffic signals, the settings (phase lengths, cycle length) of the traffic signals are fixed

and the exact same schedule repeats in every cycle. The settings only change when

the intersection switches mode of operation depending on the day or the time of day.

Typically pre-timed traffic signals have three modes of operation: 1) off-peak, 2) a.m.

peak and 3) p.m. peak. Sometimes, there is a special schedule for Saturday peak.
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Figure 4.1: The two phases of a typical right-hand traffic intersection.

In contrast to the US, Singapore uses the state-of-the-art GLIDE system that is

adapted from the SCATS [132] system to adaptively control its traffic signals. SCATS

controls traffic signals in 144 cities around the world and adaptively adjusts settings

based on measurements from its inductive loop detectors. One loop detector is installed

per lane and placed beneath the road surface at the intersection stop line. Loop

detectors, while the light is green, measure the saturation of their lane. Specifically,

lane saturation is calculated as a function of the number of vehicles that traveled over

the corresponding loop detector and the measured total gap time (i.e., amount of

time that the loop detector is unoccupied). Lane saturations are merged to calculate

a phase’s saturation.

SCATS adjusts traffic signal settings in order to balance the saturation across

the different phases of the intersection. The higher the saturation of a phase (more

vehicles), the greater portion of the cycle length is allocated to the specific phase.

Cycle length duration is adjusted depending on the saturation of all the phases of

the intersection and increases when the maximum phase saturation increases. Longer

cycles allow intersections to operate more efficiently (higher throughput), but increase

the waiting times and frustration of drivers. SCATS measures phase saturations and

changes the intersection traffic signal settings accordingly every cycle, i.e., every 1-3

minutes.
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4.5 SignalGuru Architecture

SignalGuru aims to detect and predict the schedule of traffic signals using just

software on commodity smartphones. It is a grassroots software service that leverages

opportunistic sensing on mobile phones to detect the current color of traffic signals,

share with nearby mobile phones to collectively derive traffic signal history, and predict

the future status and timing of traffic signals.

Figure 4.2 shows the modules in the SignalGuru service. First, phone cameras

are used to capture video frames, and detect the color of the traffic signal (detection

module). Then, information from multiple frames is used to filter away erroneous

traffic signal transitions (transition filtering module). Third, nodes running the

SignalGuru service broadcast and merge their traffic signal transitions with others

in communications range (collaboration module). Finally, the merged transitions

database is used to predict the future schedule of the traffic signals ahead (prediction

module).

The prediction of the future schedule of traffic signals is based on information about

past timestamped R→G transitions, i.e., information about when the traffic signals

transitioned from red to green in the current or previous cycles. The prediction is

based on R→G transitions, as opposed to G→Y (green to yellow) transitions, because

vehicle-mounted smartphones can witness and detect R→G transitions much more

frequently; when the traffic signal is red, vehicles have to stop and wait till the signal

turns green. As a result, it is quite likely that a vehicle will be at the intersection at

the moment that the R→G transition occurs and thus detect it. For a G→Y transition

to be detected, the vehicle needs to be driving towards the intersection and have good

view (≤ 50 meters away) of the signal when the signal color changes. As a result, it is

much less likely1 for a vehicle to be close enough to the intersection at the moment
1In our Singapore deployment, vehicles witnessed in total 37 R→G transitions but only two

G→Y transitions.
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Figure 4.2: SignalGuru service architecture. The two SignalGuru-enabled
vehicles are collaborating to predict the schedule of the traffic signals. One
vehicle feeds SignalGuru’s schedule predictions into GLOSA and the other
into the Traffic Signal Adaptive Navigation (TSAN) application. TSAN is
described in Section 4.9.

of the G→Y transition. The same applies also for Y→R transitions. Section 4.5.4

discusses how timestamped R→G transition information is used to predict the traffic

signal schedule.

In the next sections, we describe in detail the design of the various modules of

SignalGuru’s software architecture and the way SignalGuru tackles the challenges

mentioned in Section 4.1.
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Figure 4.3: SignalGuru-enabled iPhone mounted on the windshield. The
OBD-LINK device used to measure fuel consumption is also shown.

4.5.1 Detection Module

The detection module detects and reports the current color of potential traffic signals

in the captured video frames. The detection module is activated based on its GPS

location2 and only when it is close (<50m) to a signalized intersection. The video

frames are captured using the standard iPhone camera. As Figure 4.3 shows, when

the smartphone is mounted on the windshield, this camera is facing outside and thus

able to capture videos of the traffic signals ahead. This is just as users would mount

their smartphone when using a navigation or other travel-related application.

Detection Algorithm

SignalGuru’s traffic signal detection module must be lightweight and fast so that

the color of traffic signals can be sensed as frequently as possible, and the time of

transitions is detected as precisely as possible. The time accuracy of color transition
2We configure the iPhone’s GPS to return location stamps of the maximum possible accuracy

and frequency.
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Figure 4.4: Traffic signal detection algorithm. "NS" stands for "No Signal"
and is the status returned by the detection module when no traffic signal
can be detected with a confidence higher than the threshold value.

detections directly affects the time accuracy of predictions, as Section 4.5.4 explains.

Our SignalGuru detection module is able to process a fresh frame every two seconds.

Figure 4.4 shows our image processing algorithm used to process video frames for

the purpose of detecting traffic signals. The algorithm is based on the three most

characteristic features of a traffic signal, which are the bright red/yellow/green color

of its bulbs, the shape of its bulbs (e.g., circle, arrow) and its surrounding black box

(traffic signal housing).
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Figure 4.5: Traffic signal bulb color distribution in the RGB color space.
2628 and 2326 pixels are drawn from 200 red and 200 green traffic signals
in Cambridge, USA, respectively.

The first step of the detection algorithm is the color filtering process, as the most

distinctive feature of traffic signals is the bright color of their bulbs. The color filter

inspects the color of all pixels of an image (video frame) and zeroes out the pixels that

could not belong to a red, yellow or green traffic signal bulb. Thus, the color-filtered

image contains only objects that have the correct color to be a traffic signal bulb.

The color filter was designed empirically by analyzing the color range of red, yellow,

green bulb pixels from a set of 200 traffic signal pictures for each color3. The color

distribution for red and green traffic signal bulbs is shown in Figure 4.5. The color

filter is relatively lightweight computationally when performed in the device native

color space (i.e., RGB), and also manages to zero out most of an image, reducing

computing needs in subsequent stages. For all these reasons, the color filtering stage

comes first.
3We used a different color filter for Cambridge and Singapore as the two cities use traffic signals

implemented with different technologies.
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After color filtering, only objects that have the correct color are maintained in the

image. The next few stages examine which of them qualify to be a traffic signal based

on their shape (e.g., circle, arrow). This is achieved by first applying a Laplace edge

detection filter that highlights the boundaries of the color filtered objects and then a

Hough transform. The Hough transform uses a voting mechanism (accumulator) to

decide which objects constitute the best traffic signal bulb candidates based on their

shape.

Once the Hough transform voting is completed, the accumulator determines which

object has the most votes and is thus the best candidate to be a traffic signal. The

accumulator contains information about the location of the best candidate in the

image as well as its size (e.g., radius).

Then, the pixels of the candidate area are inspected to decide on the color of the

bulb and count exactly what percentage of the pixels falls into the correct color range.

This percentage is termed the Bulb Color Confidence (BCC). BCC helps to avoid

confusing, for example, road signs with a circular red perimeter but a different color

in the center (e.g., right turn prohibited sign) as a red signal.

According to the color and size of the bulb, a specific area around the bulb is

checked for the existence of a horizontal or vertical black box, the traffic signal housing.

For example if the bulb is red, the area below or on the left is searched for a vertical

or horizontal traffic signal black box, respectively. A Black Box Confidence (BBC)

metric is also used based on how many pixels of the searched area are dark enough to

qualify as traffic signal black box pixels.

The product BCC×BBC constitutes the detection confidence for a specific object

in the video frame. If the detection confidence is higher than a threshold value, then

the detection is considered valid and the traffic signal with the detected color is

reported. If not, then the next best candidate from the Hough transform accumulator

is examined. We found that a detection confidence threshold of 0.6 yielded the lowest
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Figure 4.6: SignalGuru service screenshot. GLOSA advisory has also been
included in the same iPhone application. Audio advisory can complement
the visual advisory to alleviate driver distraction.

detection false positive and false negative rates for our database (400 pictures). We

also found that there is little additional value in inspecting more than the 10 best

candidates of the Hough voting mechanism. As a result, the looping criterion in Figure

4.4, N , is set to 10 for our work.

IMU-based Detection Window

For visibility and other practical reasons, traffic signals are placed high above the

ground. As a result, traffic signals often appear only in the upper part of a captured

video frame. As shown in Figure 4.6, the lower half of the image captures the road

and other low-lying objects, whereas the traffic signals are located in the upper half.

The part of the image where the traffic signal can be located depends not only on the

orientation of the windshield-mounted smartphone, but also on the distance from the

traffic signal; the closer the phone to the traffic signal, the higher the signal appears

in the image for a given device orientation.
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Figure 4.7: Detection window calculation. φ is the smartphone camera’s
vertical angle of view. d is the distance of the smartphone device from the
traffic signal and is calculated based on the GPS location of the device.
hs and hc are relatively fixed and are the heights of the traffic signal and
camera, respectively. ω is the roll angle of the camera and is calculated by
the accelerometer- and gyro-based IMU.

SignalGuru leverages information from the smartphones’ inertial sensors to narrow

its detection window, i.e., the part of the image where traffic signals are expected to

appear. More specifically, SignalGuru uses information from the accelerometer and

gyro-based IMU of the smartphone to infer its orientation (roll angle) and information

from its GPS device to calculate distance from the traffic signal.

With this information, the size of the detection window can be easily calculated

analytically. As shown in Figure 4.7, the traffic signal is located within the angle θ.

Hence, if φ is the camera’s vertical angle of view, then the part of the image that

needs to get processed is only the upper θ/φ fraction4. For iPhone 3GS and iPhone 4

devices, φ = 34.6 ◦ and 47.5 ◦, respectively. The angle θ is calculated as: θ = φ/2− χ

where χ = ψ − ω and ψ = arctan(hs − hc)/d (see Figure 4.7). The height of the

detection window is then cropped to H × θ/φ. The IMU-based detection window is

shown with a red bounding box in Figures 4.6 and 4.7.
4Using the small angle approximation, tanx ≈ x.
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The IMU-based detection window scheme enables SignalGuru to ignore a large

portion of a captured frame that can have nothing but noise, providing twofold

benefits: First, the image processing time is almost halved, and second the traffic

signal detection is significantly improved. The benefits of this scheme are evaluated in

Section 4.7.2.

Variable Ambient Light Conditions

Ambient light conditions significantly affect the quality of captured still images and

video frames. The amount of ambient light depends on both the time of the day

and the prevailing weather conditions (sunny vs. cloudy). Smartphone cameras

automatically and continuously adjust their camera exposure setting to better capture

the target scene. Nevertheless, we found that traffic signals are often not captured

well with their bulbs appearing either too dark (underexposed) or completely white

(overexposed). As a result, the detection module would perform very poorly in some

cases.

Traffic signals, however, have a fixed5 luminous intensity. We leverage this by

adjusting and locking the camera exposure time to the fixed intensity of traffic signals.

This eliminates the sensitivity of traffic signal detection to time of day or weather. The

camera exposure time is automatically adjusted by pressing the "Adjust Exposure"

button and pointing the camera to a traffic signal. Then by pressing the "Lock

Exposure" button, the setting is recorded and locked, obviating the need for further

adjustments.

4.5.2 Transition Filtering Module

The raw detection of traffic signals and their color transitions (R→G) given by the

detection module is fairly noisy. In our Singapore deployment, in 65% of the cases
5LED traffic signals have fixed luminous intensity. Older incandescent traffic signals do not, but

are quickly becoming obsolete. Both Cambridge and Singapore use LED traffic signals.
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that a vehicle is waiting at a red traffic signal, it reports a false positive transition,

i.e., a transition that did not actually occur. Typically, the image detection module

was detecting the actual red light and then happened to misdetect some arbitrary

object for a green light. Note that vehicles were waiting at the intersection for 48s,

on average, capturing and processing perhaps dozens of video frames. If not handled

properly, a single false green light detection would be enough to erroneously generate

a transition report. Similarly, if a vehicle happens to misdetect an arbitrary object for

a red light in between detections of the actual green light, a false transition would be

reported.

While, ideally, we would like to detect and report all R→G transitions witnessed

(no false negatives), it is even more critical to avoid false positives (reports of transitions

that never happened), because false positives pollute the prediction scheme. Therefore,

we filter R→G transitions using a two-stage filter: A Low Pass Filter (LPF) in the

first stage and a colocation filter in the second stage.

Low Pass Filter (LPF)

According to our findings from our Singapore deployment, in 88% of the cases, false

positive detections occur over a single frame and do not spread over multiple consecutive

frames. As a result, most false transitions have one of the following three patterns

with the false detection marked in bold:

1) R→ ...→R→G→R→...→R

2) G→ ...→G→R→G→...→G

3) NS→...→NS→R→G→NS→...→NS

The first (most common) pattern occurs when the vehicle is waiting at the red

light it correctly detects, then at a specific instance it misdetects a passing object (e.g.,

design on a bus crossing the intersection) for a green traffic light. The second pattern

occurs when the vehicle misdetects an arbitrary object for a red light in between
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detections of the actual green light. Finally, the third pattern occurs when the view

of the vehicle is obstructed and there is no traffic signal in sight. However, at some

point, it misdetects an arbitrary object for a red light and right after that a different

object for a green light. This pattern is the least common.

The LPF filters out such "spikes" or anomalies across multiple traffic signal

transitions by adding some hysteresis. The LPF classifies only transitions that have

the R→ R→G→G pattern as valid, i.e., at least two red status reports followed by at

least two green status reports. As our results in Section 4.7.3 show, the LPF filters the

vast majority of false positive transitions at the cost of creating only a small number

of false negatives (actual transitions removed by the filter).

Colocation Filter

A distinctive feature of traffic signals, as opposed to other objects with similar colors

and shape, is that the red and the green bulb are contained in the same black box,

that is, they are colocated. SignalGuru’s filtering module leverages this by checking

whether detected red and green bulbs are colocated before accepting a transition

as valid. More specifically, the colocation filter checks whether the green bulb that

was just detected is close to the red bulb detected in the previous frame. Note that

the accumulator of the Hough transform pinpoints the location of the traffic signal

candidates.

Given that SignalGuru can capture and process video frames every 2s, the average

delay between the light turning green and SignalGuru capturing this event in its next

video frame is 1s. In 1s or even 2s that is the maximum possible green light capture

delay, a vehicle will not have accelerated and moved significantly. Hence, there is no

need to compensate for vehicle movement.

However, as exemplified by the photo in Figure 4.3, many intersections have two or

more traffic signals for the same phase, or for the same direction of traffic. Therefore,
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the red and green bulbs may be detected on different traffic signals across the two

frames. To tackle this, before the colocation filter rejects a transition as invalid, it

invokes the detection module to check whether there exists, in the current frame, a

green bulb that is collocated with the red bulb of the previous frame. In this case, the

detection window covers only a very small area around the red traffic signal of the

previous frame, and thus incurs negligible computational overhead.

As shown in Section 4.7.3, the colocation filter effectively filters out false positive

transitions at the cost of a small increase in false negatives. Together, the LPF and

the colocation filter form a very robust two-stage filter.

4.5.3 Collaboration Module

SignalGuru depends on the grassroots collaboration among the participating nodes

(smartphones). A node is limited by its field of vision, and does not have all the

information it needs in order to predict the schedule of the traffic signals ahead.

Typically, a node needs information about a traffic signal well before the signal comes

into the node’s camera field of view. As a result, the predictions of a node depend on

data sensed by the node’s predecessors in a given intersection.

For the prediction of traffic-adaptive traffic signals, collaboration is even more

critical. As we explain in Section 4.5.4, in order to predict traffic-adaptive traffic

signals, information from all phases (intersecting roads) of an intersection is needed.

Furthermore, Section 4.7.4 shows how more collaborating nodes and more traffic signal

history can improve the prediction accuracy for the challenging traffic-adaptive traffic

signals of Singapore.

The collaboration module allows participating SignalGuru nodes to opportunis-

tically exchange their traffic signal information (timestamped R→G transitions) by

periodically (every two seconds) broadcasting UDP packets in 802.11 ad-hoc mode.

A SignalGuru node exchanges not only the data it has sensed on its own, but also
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the data it has opportunistically collected so far. Only data about the traffic signal

transitions of the last five cycles is exchanged. We found that using a longer history

of data does not significantly improve the traffic signal prediction accuracy.

In order to be able to predict the schedule of the traffic signals ahead (Section

4.5.4), nodes need either the database of the traffic signal settings (for pre-timed traffic

signals) or the SVR prediction models (for traffic-adaptive signals). This information is

passed to a node along with the sensed transition data before the node approaches the

corresponding traffic signals. However, it is likely that this node will have also crossed

the traffic signal ahead in the recent past (e.g., yesterday due to daily commute). In

this case, the sizeable (62 KB) SVR prediction models do not need to be sent again as

they are relatively static (Section 4.7.4). The settings for a pre-timed traffic signal can

be encoded in just a few bytes and thus sending them again incurs negligible overhead.

More specifically, when running atop RegReS, SignalGuru service carriers will need

to exchange the following three types of data:

1. Service Advertisement (SA) data: SignalGuru carriers broadcast periodically

(every T=2sec) SA packets. RegReS uses SA packets in order to be able to

estimate the current density of service carriers and decide when it is necessary

to spawn new carriers. SA packets also allow for discovery of service carriers by

other nodes that are interested in receiving traffic signal schedule information,

as well as discovery of potential carrier nodes if spawning is necessary. Last, the

service version field of SA packets allows existing carriers to detect if they have

different service data (versions). In this case, they will request the newer data

from the other service carriers.

2. Carrier Spawn (CS) data: An existing SignalGuru carrier passes to a newly

spawned carrier the information about all the traffic signal transitions that got

collaboratively detected within the specific region and over the last five cycles.

More specifically, for each detected transition, the timestamps of the last red
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and first green color detections are sent. For traffic-adaptive traffic signals, the

SVR prediction model for each regional traffic signal (phase) is passed to newly

spawned carriers as well, if necessary. CS data are also exchanged to update an

existing carrier that has older service data (version).

3. Service Update (SU) data: When a new traffic signal transition is detected, its

information is epidemically forwarded to all other regional carriers.

The amount of traffic signal information6 that SignalGuru nodes gather and

exchange can be constrained by tiling a geographic area into regions and having

SignalGuru nodes maintain and exchange data that belong only to their current

region. Different ways to tile an area into regions along with their respective network

overheads are evaluated in Section 4.7.5.

4.5.4 Prediction Module

Two main categories of traffic signals exist: pre-timed and traffic-adaptive traffic

signals. Since their operation is very different, SignalGuru uses different prediction

schemes for each category.

Pre-timed Traffic Signals

SignalGuru’s prediction module maintains a database of the traffic signal settings. As

described in Section 4.4, pre-timed traffic signals have fixed pre-programmed settings

for their different modes (a.m./p.m. peak, off-peak, Saturday peak). Traffic signal

settings can be acquired from city transportation authorities. In case they are not

available, the settings (phase lengths) can be measured collaboratively, as described

in the next section. This means that SignalGuru knows how long each phase lasts.

The challenge remains to accurately synchronize SignalGuru’s clock with the time of
6Sensed traffic signal transitions, database of traffic signal settings and SVR prediction models

for pre-timed and traffic-adaptive traffic signals, respectively.
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Figure 4.8: Timeline of traffic signals operation and SignalGuru’s detections
and predictions for a simple intersection with two phases (A and B). The
letters on the timeline denote for which of the two phases the light is
green. The timestamps of actual, detected and predicted phase transitions
are also marked with t, t′ and τ , respectively. PLA is the actual length of
phase A and PL’A its predicted value. εd and εp are the color transition
detection and prediction errors, respectively.

phase transition of a traffic signal. Once this is achieved, SignalGuru can very easily

predict when the traffic signal will switch again to green, yellow or red.

Clock synchronization is achieved by capturing a color transition, e.g., R→G.

Figure 4.8 shows a timeline of events. If the timestamps of the last red and first green

color detections for phase A are t′A,R and t′A,G, respectively, then the detected transition

time is t′A,R→G = (t′A,R+ t
′
A,G)/2. Clock synchronization needs to be reestablished after

a false R→G detection and every time the traffic signal changes mode of operation or

recovers from an operational failure.

The time the traffic signal will switch to red for phase A (and green for phase

B) can be predicted by adding the predicted7 length of phase A (PL′A) to t′A,R→G as

τB,R→G = t′A,R→G + PL′A. Since this intersection has only two phases, phase A will

follow after phase B; as phases are scheduled in a predictable, round-robin way. By

adding (PL′B) to τB,R→G, we get the next R→G transition for phase A, and so on.
7For pre-timed traffic signals, the predicted phase length is the value looked up in the traffic

signal settings database.
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Traffic-adaptive Traffic Signals

The Singapore GLIDE (SCATS) system constitutes one of the most sophisticated and

dynamic traffic-adaptive traffic signal control systems. As described in Section 4.4,

SCATS measures the saturation of the intersections’ phases and adjusts their phase

lengths at every cycle. Phase lengths change when SCATS changes the value of the

cycle length or the fraction of the cycle length that gets allocated to them. SCATS

may choose to change both settings at the same time. Phases are still scheduled in a

deterministic round-robin manner.

SignalGuru predicts future transitions (e.g., when the signal ahead will turn green)

by detecting past transitions and predicting the length of the current or next phases.

The key difference from the prediction of pre-timed traffic signals lies in the prediction

of the phase length, as opposed to looking it up from a database.

SignalGuru predicts the length of a phase by measuring and collaboratively collect-

ing the prior traffic signal transition history, and feeding it to an SVR [23] prediction

model. In Section 4.7.4, we evaluate the prediction performance of different Prediction

Schemes (PSs) by training the SVR with different sets of features:

• PS1: The next length of a given phase, e.g., A, is predicted based on the history

of the same phase, i.e., the next length of phase A is predicted based on the

lengths of the five previous phases of A. We found that further increasing the

length of the history does not yield any benefits. Similarly, SCATS uses only

loop-detector measurements performed over the last five cycles to determine the

next traffic signal settings.

• PS2: Like PS1, but the length of the preceding phases of the same cycle is

also provided. This means that when trying to predict the length of phase C,

the lengths of preceding phases A and B are also fed to the SVR model. As

our results show, this information improves significantly the performance of the

prediction module. The reason is that changes to a given cycle’s phase lengths
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are correlated when SCATS changes just the cycle length setting, instead of the

phase length setting.

• PS3: Like PS2, except that information for the past five cycle lengths is also

factored in.

• PS4: This is a theoretical prediction scheme. We assume the existence of loop

detector saturation information in addition to PS3. Saturation values over the

past five cycles are fed to the SVR model. Note that traffic (vehicle speed)

estimation is not a good proxy for the unavailable loop detector measurements.

Average vehicle speed does not always correlate well with the saturation measured

by SCATS’s loop detectors; a specific phase, despite the fact that vehicles are

moving fast, may be highly saturated (with dense flow).

One-week-long history of data is enough to train the SVR model, as our results

show. Furthermore, the SVR model does not need to get continuously re-trained.

Re-training the model every four to eight months is frequent enough in order to keep

the prediction errors small.

In order for SignalGuru to be able to use any of the first three feasible prediction

schemes, the lengths of the past phases need to be measured. While it is easy for

SignalGuru to detect the R→ G transition for the beginning of a phase, as explained

in Section 4.5, it is very hard to detect the G→ Y transition for the end of the phase.

To remedy that, collaboration across nodes waiting at the different traffic signals of

the same intersection is leveraged; the G→ Y transition of a given phase is inferred

by the R→ G transition of the successor phase that was detected by nodes waiting at

the traffic signal of the successor phase. For example, the fact that the light turned

green for phase B at time t means that it turned yellow for phase A at time t minus

the clearance interval. The clearance interval is a fixed setting and is the amount of

time a phase is yellow plus the amount of time all phases are red before the next one
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turns green. As its name denotes, it gives the previous phase enough time to clear

before the next conflicting phase starts.

4.6 Methodology

This section describes the two deployments that we performed in Cambridge and

Singapore to evaluate SignalGuru.

4.6.1 Cambridge Deployment

As mapped in Figure 4.9, our November 2010 deployment in Cambridge targeted

three consecutive intersections on Massachusetts Avenue. We used five vehicles with

iPhones mounted on their windshields and asked the drivers to follow the route shown

for ∼3 hours. Given the small number of available vehicles, all vehicles were used for

SignalGuru and collaborated with an epidemic broadcast-based scheme, as opposed

to using RegReS’s selective service activation. Note that the opportunity for node

encounters (within ad-hoc wireless range) was small, as all the vehicles followed the

same route so they were rarely in range of each other. To rectify this, an extra iPhone

device was held by a pedestrian participant located at the intersection of Massachusetts

Avenue and Landsdowne Street. This SignalGuru device served as an ad-hoc data

relay node, facilitating data exchange between the windshield-mounted iPhone nodes.

Only the collaboration module was active on the relay node. The experiment took

place between 1:20pm - 4:30pm. At 3:00pm, the traffic signals changed operation

mode from off-peak to afternoon peak.

4.6.2 Singapore Deployment (Bugis Downtown Area)

Our other deployment was in Singapore in August 2010. Unlike Cambridge, the

Singapore deployment tests SignalGuru on traffic-adaptive traffic signals. To measure
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P1

P2

Figure 4.9: Route of vehicles in Cambridge deployment. The targeted inter-
sections are marked with circles. P1 and P2 are the start and end points,
respectively, for our GLOSA experiment trip.

phase lengths and predict the schedule of traffic-adaptive traffic signals, SignalGuru

needs to monitor all phases of an intersection, i.e., orthogonal directions of a traffic

intersection. Hence, in this deployment, we had two sets of vehicles following the

two distinct routes shown in Figure 4.10. In this way, both phases of the intersection

(Bras Basah and North Bridge Road in Singapore’s downtown) were sensed. Phase

A corresponds to vehicles moving along Bras Basah Road and phase B to vehicles

moving along North Bridge Road.

We used eight iPhone devices in total and mounted them on the windshields of

taxis. Five devices were moving on the longer route of phase A and the other three on

the shorter route of phase B. Similarly to our deployment in Cambridge, collaboration

was enabled with an epidemic broadcast-based scheme and an extra iPhone device

was used as a relay node. In this case, the relay node was also recording the ground

truth8, i.e., when the traffic signals status transitioned. Ground truth information
8In our Cambridge deployment, since the schedule of the signals is fixed, it can be easily inferred

from the images logged by the windshield-mount iPhones. Hence, there was no need to record the
ground truth with an extra iPhone device.
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A B

Figure 4.10: The two distinct routes of taxis in Singapore deployment in
the Bugis downtown area. Routes A and B correspond to phases A and
B of the targeted intersection, respectively. The targeted intersection is
marked with a circle.

was only used for offline evaluation of SignalGuru’s accuracy thereafter. It was not

shared with other participating nodes. The experiment took place from 11:02am -

11:31am (∼30min).

4.7 SignalGuru Evaluation

Here, we evaluate the performance of each of SignalGuru’s modules before evaluating

its overall performance in two deployments in Cambridge and Singapore. We also

performed a large-scale analysis for SignalGuru’s prediction accuracy based on the

data we collected from Singapore’s Land Transport Authority.

4.7.1 Traffic Signal Detection

We evaluate the performance of SignalGuru’s detection module for our two deployments.

In Figure 4.11, we show both the percentage of false negatives (traffic signals that

did not get detected) and the percentage of false positives (arbitrary objects confused
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Figure 4.11: Traffic signal detection module evaluation. R/Y/G/NO stands
for video frames where the traffic signal is actually Red/Yellow/Green
or non-existent. A false negative is when the module fails to detect the
existing traffic signal. A false positive is when the module confuses an
arbitrary object for a traffic signal of a specific R/Y/G status. We omitted
"Y" results as there were very few such frames and hence the detection
results are not statistically important.

for traffic signals of a specific color). Results are averaged over 5959 frames and

1352 frames for the Cambridge and Singapore deployments, respectively. The average

misdetection rate that includes both false negatives and false positives was 7.8%

for Cambridge and 12.4% for Singapore deployment. In other words, SignalGuru’s

detection module correctly detected the existence (or the lack) of a traffic signal in

92.2% and 87.6% of the cases in Cambridge and Singapore, respectively. Note that

most (>70%) video frames are captured while vehicles are waiting at the red light.

Hence, the average (mis)detection rate is strongly biased by the results for "R", i.e.,

frames with a red traffic signal.

As Figure 4.11 shows, the detection module is particularly more likely to report a

false positive when there is no traffic signal in sight. When a traffic signal is captured

in the video frame, the actual traffic signal will normally get the most votes in the

Hough transform’s accumulator and a valid detection will be recorded. If there is no

traffic signal in sight, the detection module will try to find the best possible candidate
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object that most resembles a traffic signal in terms of its color, shape and enclosing

black box, which can trigger more false positives.

Furthermore, the ratio of false positives of different colors differs significantly across

the two deployments. For example in Cambridge, yellow light false positives are more

common than in Singapore, where there are more green light false positives. This is

because of the prevailing ambient light conditions and the object composition of the

environment at the targeted intersections. In Singapore, there were many more trees

and also a black electronic message board with green letters, whereas in Cambridge,

the sun was setting, giving a strong yellow glare to several objects (e.g., road signs,

vehicles, buildings, etc.).

Another interesting observation is that the number of false negatives (missed traffic

signal detections) is almost double in the Singapore deployment, as compared to the

Cambridge deployment. The reason lies in the traffic signal bulbs used in each city.

Singapore’s LED bulbs are exposed, whereas Cambridge’s are covered by a refraction

lens. The LED traffic signal bulbs consist of an array of smaller LEDs that is refreshed

in columns at a relatively low frequency. The refresh frequency is high enough to be

invisible to the human eye but low enough to be detectable by a camera when there is

no refraction lens covering the bulb. In Singapore, the camera would thus sometimes

capture the bulbs with dark stripes (columns) of LEDs that have not got refreshed,

reducing the probability of a successful traffic signal detection.

4.7.2 IMU-based Detection Window

In this section, we evaluate the benefits that the IMU-based detection window offers.

The iPhones were oriented horizontally, as shown in Figure 4.3. The lower line of

the detection window will thus be horizontal and across the center of the image

when the vehicle is at a distance of ∼50m from the intersection. The results, for

when the IMU-based detection window was activated/deactivated, were acquired by
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Figure 4.12: IMU-based detection window scheme evaluation for Cambridge
deployment. The IMU-based detection window scheme almost halves the
rate of misdetections.

online/offline traffic signal detection. The offline detection was based on the same

video frames that were logged and processed by the iPhone devices online.

The comparisons in Figure 4.12 show that the IMU-based detection window almost

halves the average misdetection rate reducing it from 15.4% to 7.8%. Above all, the

IMU-based detection window significantly reduces the number of red false positives;

when the detection window scheme is not used and the whole video frame is processed,

the detection module often confuses vehicles’ rear stop lights for red traffic signal

bulbs.

On the other hand, the IMU-based detection window scheme increases the number

of false negatives when the traffic signal is red; when a vehicle is decelerating abruptly

to stop at the red light, the IMU miscalculates the device’s orientation. As a result,

the detection window is also miscalculated, becoming so small that the traffic signal is

excluded. Nevertheless, the effects of abrupt decelerations are only transient and a

car is soon able to detect the traffic signal ahead.
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Figure 4.13: Transition filtering module evaluation. The transition filter-
ing module removes false positive reports without significantly increasing
the number of false negatives. The iPhone devices witnessed 219 and
37 traffic signal transitions in our Cambridge and Singapore deployments,
respectively.

Overall, since only a fraction of the video frame is processed, the IMU-based

detection window scheme reduces the average processing time by 41% (from 1.73s to

1.02s).

4.7.3 Transition Filtering

The performance of the transition filtering module is evaluated in terms of the number

of false positives (invalid transitions) it manages to remove and the number of false

negatives it creates (valid transitions erroneously removed).

As shown in Figure 4.13, the probability of (unfiltered) false positives in the

Cambridge deployment is significantly smaller when compared to the Singapore

deployment. This occurs for two reasons: First, the rate of false positive traffic signal

detections is smaller in Cambridge. Second, the average waiting time at red traffic

signals is only 19.7s for Cambridge vs. 47.6s for Singapore. As a result, the probability

of a false positive transition detection during that waiting time is significantly lower.
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While the LPF and colocation filters each significantly reduce the number of false

positives, it is when both filters are applied in series that all false positives are removed

in both deployments, with only a small increase in the number of false negatives. More

specifically, the probability of false negatives increased by 6.8% for Cambridge and

8.1% for Singapore. Thus, the transition filtering module effectively compensates our

lightweight but noisy traffic signal detection module.

4.7.4 Schedule Prediction

This section evaluates the accuracy of SignalGuru’s traffic signal schedule predictions.

Cambridge Deployment

We evaluate the overall accuracy of SignalGuru’s traffic signal schedule predictions

for Cambridge’s pre-timed traffic signals. As evaluation metric, we use the prediction

mean absolute error; the absolute error between the predicted and the actual traffic

signal phase transition time, averaged across the 211 predictions performed by the

participating iPhone devices.

As shown in Figure 4.14, SignalGuru can predict the schedule of pre-timed traffic

signals with an average error of only 0.66s. Since SignalGuru uses a database for the

settings of pre-timed traffic signals, the prediction error is solely caused by the error

with which SignalGuru detects color (phase) transitions. When SignalGuru captures

and processes video frames every T=2s, the transitions are theoretically detected

with an error that has a maximum value of εmax=T/2=1s and an expected value

of [ε]=T/4=0.5s. This is very close to the measured prediction error value of 0.66s.

Given this very small prediction error, our SignalGuru can effectively support the

accuracy requirements of all applications described in Section 4.9.
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Cambridge
next transition

Landsdowne Albany Vassar
transition time detection average error 0.62603614 0.61893333 0.73192014
STDEV 0.16954206 0.18230964 0.16758458

Singapore
next transition

Phase A Phase B Average
sensing modules 0.90765167 0.29191167 0.59978167
prediction module 1.61219 2.09178 1.851985
Measuring error 0.5

Average Prediction Error based on ground truth
Phase A Phase B

2.519841667 2.38369167

Average error for prediction based on LTA data
Phase A Phase B

1.61219 2.09178
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Figure 4.14: Mean absolute error of SignalGuru’s traffic signal schedule
predictions for the three targeted intersections in Cambridge. The error
bars show the standard deviation of the mean absolute error. The ground
truth on the status of traffic signals was inferred by the images logged by
the windshield-mounted iPhones with sub-300ms accuracy.

Singapore Deployment

We evaluate the accuracy of SignalGuru’s traffic signal schedule predictions for Singa-

pore’s traffic-adaptive traffic signals, using the prediction mean absolute error as the

evaluation metric. The prediction module was configured to use the prediction scheme

PS3, and was trained offline using a week’s worth of data (June 1-7 2010) that we

obtained from Singapore’s Land Transport Authority (LTA).

As our results in Figure 4.15 show, SignalGuru can predict the time of the next

color transition with an average error of 2.45s. The next color transition prediction

error is broken down into an average absolute error of 0.60s in detecting the current

phase’s start time (detection module error) and an average absolute error of 1.85s in

predicting the length of the current phase (prediction module error). The prediction

error is due to both the inaccurate phase duration measurements that are fed into

the SVR model and the prediction error of the SVR model, with the latter being the

main contributor. The phase duration measurement error has a triangular probability
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Figure 4.15: Traffic signal schedule prediction evaluation for Singapore de-
ployment. The ground truth was recorded every two seconds and the
actual (ground truth) transition time for a phase e.g., A was calculated as
t′A,R→G = (t′A,R + t′A,G)/2. The measurement error was thus 1s (shown with
error bars).

density function9 and the expected value for the phase duration measurement absolute

error is only [εduration]=T/3=0.66s. Results are averaged over 26 predictions. The

schedule prediction accuracy for the two phases is comparable.

Without collaboration, SignalGuru would not be able to measure the past length

of the phases for the purpose of feeding them into the SVR-based prediction scheme

and predicting their future lengths. SignalGuru would have to predict the future

phase length for a traffic-adaptive traffic signal using the same scheme that it uses for

pre-timed signals, i.e., by using a typical fixed value for it. Such a value could be, for

example, the average length of the phase during the same hour of the previous day. In

this case, the prediction error would have been 11.03s instead of 2.45s (3.5× higher).

Collaboration is critical for accurate traffic signal schedule predictions, particularly

for traffic-adaptive traffic signals.
9Assuming independent and uniformly distributed in [0, T/2] errors for the detection of the phase

start and stop times.
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Singapore Large-scale Prediction Analysis

In order to perform a large-scale evaluation of the performance of SignalGuru’s

prediction module across different traffic signals and intersections with different traffic

patterns, we collected traffic signal operation logs from Singapore’s Land Transport

Authority. More specifically, we collected logs for 32 traffic signals (phases) in the

Dover (suburban) area and for 20 traffic signals (phases) in the Bugis (downtown)

area. The logs spanned over the two weeks of June 1-14, 2010 and contained more

than 200,000 phase lengths for both Bugis and Dover traffic signals. We used the

logs of the first week to train the different SVR-based prediction schemes, and the

logs of the second week to test their performance. The training and testing sets were

therefore not overlapping.

Prediction Schemes Evaluation. In Figure 4.16, we evaluate the performance

of the different phase length prediction schemes for the traffic signals of Dover and

Bugis. We also include the performance of a baseline scheme PS0 that uses the

last measurement of a phase’s length as the prediction for its future length. PS3

outperforms PS1 and PS2 and reduces the phase length prediction mean absolute

error by 37% (from 3.06s to 1.92s) for Bugis and by 26% (from 1.60s to 1.194s) for

Dover when compared to PS0.

As shown in Figure 4.16, the prediction mean absolute error for Dover traffic

signals is half when compared to the error for Bugis traffic signals. However, note

that the average phase length for Bugis is 47s whereas for Dover it is only 28s. As

a result, the relative errors (when compared to their own average phase length) are

more comparable: 4.1% for Bugis and 4.3% for Dover.

Surprisingly, we found that the theoretical prediction scheme PS4, which assumes

knowledge of loop-detector information, does not outperform PS3. We believe that this

is because the effects of loop-detector measurements are already captured by SCATS
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Figure 4.16: Evaluation of the different prediction schemes for Bugis and
Dover traffic signals.
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Figure 4.17: Prediction model sizes for the different prediction schemes.

in the history of the phase and cycle length settings that it chooses and SignalGuru

measures them and uses them as prediction features for PS3.

As Figure 4.17 shows, the more complex the prediction scheme, the bigger the

size of its model. However, after compression, the size of PS3’s model used by our

SignalGuru remains relatively small (67 KB).
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Figure 4.18: Evaluation of SignalGuru’s prediction scheme PS3 when pre-
dicting multiple phases ahead for Bugis and Dover traffic signals.

Increasing available lead-up time. In order to increase the available lead-up

time beyond the length of a single phase10, SignalGuru needs to predict multiple

phases ahead. For traffic-adaptive traffic signals, the prediction error increases as

SignalGuru tries to predict multiple phases ahead. For pre-timed traffic signals, for

which the phase lengths are fixed and known, the prediction error only depends on

the ability of SignalGuru to synchronize with the traffic signal (by detecting a color

transition as accurately as possible) and thus the lead-up time is arbitrarily long so

long as it is within the same traffic mode.

Figure 4.18 shows the error of the prediction module, when it predicts the lengths

of multiple phases ahead. The prediction error increases sublinearly as the number

of predicted phases increases. However, even when predicting four phases ahead, the

total prediction error for all phase lengths is only 4.1s (8.7%) and 2.4s (5.2%) for

Bugis and Dover traffic signals, respectively. Given that wireless 802.11g broadcasts

KB data over several hops in < 1s, the average available lead-up times for Bugis and

Dover are 187s and 114s, respectively. The percentage of available data (% transitions

detected) in our Singapore deployment was 81%.
10Predicting a single phase in advance suffices for all proposed applications except for the TSAN

application.
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Figure 4.19: Phase length prediction accuracy for Bugis and Dover traf-
fic signals as the percentage of the available traffic signal transition data
varies.

As this analysis shows, SignalGuru can predict accurately the schedule of traffic-

adaptive traffic signals regardless of their location, e.g., suburban or downtown.

Furthermore, their schedule can be predicted multiple phases in advance with small

errors, enabling all the novel applications mentioned in Section 4.9 for traffic-adaptive

traffic signals.

Collaboration Benefits. Figure 4.19 shows how the accuracy of phase length

predictions depends on data availability, i.e., the percentage of traffic signal transitions

that are detected and made available (through collaborative sensing and sharing).

Where the phase length cannot be determined (because no SignalGuru node detected

its start or end), we used the previously predicted phase length. The more transition

data are available (higher degree of collaboration), the better SignalGuru’s prediction

accuracy. When data availability drops below 25% for Bugis and 28% for Dover,

relative prediction errors degrade to >10%. As a result, SignalGuru can no longer

meet the requirements of the described applications. Collaboration is thus critical to

ensure high-quality predictions.

SVR re-train frequency. We evaluate how well the SVR model that was trained

using the data of June 1-7, 2010 can predict the schedule of the traffic signals after one
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Figure 4.20: Prediction model performance over time. The prediction per-
formance of the SVR model that was trained with the data of June 1-7
2010 is evaluated for the weeks of June 8-14 2010, July 1-7 2010, October
1-7 2010 and February 1-7 2011.

week (June 8-14, 2010), one month (July 1-7, 2010), four months (October 1-7, 2010)

and eight months (February 1-7, 2011). As shown in Figure 4.20, the SVR model

can make accurate predictions even after eight months for both Dover and Bugis.

More specifically, the error for Dover traffic signals does not significantly increase

over time. In contrast, for Bugis traffic signals, the prediction error increases by 33%

(from 1.9s to 2.6s) after eight months. Singapore’s Land Transport Authority (LTA)

engineers manually perform changes to the traffic signal settings (e.g., phase programs)

over time in an attempt to better optimize the traffic signals operation in the busy

Singapore downtown area. As a result, SingalGuru’s prediction ability degrades over

time for Bugis, and the SVR model needs to get retrained every few months in order

to keep prediction errors low.

4.7.5 Service Overhead

In this section, we evaluate the resources that SignalGuru requires in terms of commu-

nication and computation.
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Communication Resources

To calculate the communication overhead of a widely-deployed SignalGuru service,

we assumed an implementation on top of RegReS that allows for selective service

activation. The size of the different packets was calculated assuming that nodes

maintain a history of only the last five transitions for each traffic signal phase and

that each intersection has an average of 2.5 phases, as in Singapore’s Bugis area. For

traffic-adaptive traffic signals, the prediction scheme PS3 was used assuming a model

size of 67 KB. Again, as shown in Figure 4.17, this is the average size of PS3 models for

traffic signals in Bugis. A density of four SignalGuru carriers per 250-meter-long road

segment was also assumed, with vehicles moving at an average speed of 10m/s and

stopping at only 50% of the traffic signals, on average. With only half of the vehicles

stopping at the traffic signal, on average, a density of four carriers per 250-meter-long

road segment yields a high probability of having at least one vehicle detect the R→G

transition of the traffic signal. Given the small size of the regions, we also assume for

simplicity that vehicles move only straight (no turns within the region). The average

red light waiting time was calculated assuming that vehicles are equally likely to arrive

at any time within the red light duration and assuming an average phase length of

47s. This is the average phase length of traffic signals in Singapore’s downtown area

(Bugis).

In Figures 4.21(a) and (b), we show the bandwidth consumed per carrier for the

different region sizes illustrated in Figures 4.22(a)-(c) for pre-timed and traffic-adaptive

traffic signals, respectively. The amount of information exchanged depends greatly on

the size of the regions into which an area is tiled. The bigger the region, the greater

the number of included signalized intersections and, hence, the greater the amount of

information exchanged between SignalGuru service carriers. However, the larger the

region, the longer the possible available lead-up distance and time.
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Figure 4.21: Bandwidth required per carrier for different region sizes (Fig-
ures 4.22(a)-4.22(c)) of pre-timed (a) and traffic-adaptive (b) traffic signals.
For traffic-adaptive traffic signals the sizeable SVR prediction models need
to be included in the spawn packets, significantly increasing the required
bandwidth. SignalGuru includes compressed PS3 models in its spawn
packets.

158



250m

25
0m

AR1

R2

R4

R3

(a)

500m

50
0m A

(b)

1000m

10
00
m

A

(c)

Figure 4.22: Different region sizes for traffic signals of intersection "A".
The traffic signals covered by the corresponding regions are shown. The
"250m" region (a) consists of the single road segment before the traffic
signal. Four such regions are needed to cover the whole intersection. The
500m x 500m (b) and 1000m x 1000m (c) regions cover one and nine
intersections, respectively.

As shown in Figure 4.21(a), for pre-timed traffic signals the per-carrier bandwidth

consumption is dominated by SA and SU data. The bandwidth for SA packets is

fixed, whereas the bandwidth for SU data increases as the region size increases. The

bigger the region, the higher the number of included signalized intersections, and the

larger the amount of detected transition information received and forwarded by each
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carrier. The bandwidth for CS data is small due to their small size and the relatively

low frequency of SignalGuru service carrier spawns.

The same trends exist for the bandwidth of SA and SU data of traffic-adaptive traffic

signals. However, for traffic-adaptive traffic signals, the CS data are significantly larger

because of the sizeable SVR prediction models that need to be passed to newly spawned

carriers. As a result, CS data, by far, dominate the communication bandwidth. For

the same reason, the required bandwidth for traffic-adaptive traffic signals is 30×-40×

higher as compared to the bandwidth for pre-timed traffic signals.

Overall, the communication resources required to collaboratively support Signal-

Guru atop the RegReS middleware is limited. Even for traffic-adaptive traffic signals,

the required communication bandwidth per carrier is less than 22 KB/s. Furthermore,

thanks to RegReS, which judiciously spawns only as many carriers as needed, the

required aggregate communication resources for SignalGuru across a region are kept

at bay.

Computational Resources

In this section, we present the computational (CPU, memory) resources that Signal-

Guru consumes. We profiled SignalGuru across one hour using Xcode’s CPU Sampler

performance tool. During the profiling, the iPhone 3GS device was facing the first

intersection of Figure 4.9 at a distance of ∼30m from the traffic signal. SignalGuru

was configured to process a new frame every 2 seconds using the IMU-based detection

window scheme. The GPS and IMU modules were thus activated.

In Table 4.1, we show the computation time for the different components of

SignalGuru. About 67% of the application CPU time is spent on traffic signal

detection. This corresponds to 51% of system CPU time. The logging of images

takes up 22% of the application CPU time11. For pre-timed traffic signals, the traffic
11Image logging was necessary in our experiments so that we can test whether the traffic signal

detection was successful or not. In a real system, image logging would be disabled.
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Table 4.1: Computation resources required by SignalGuru’s different mod-
ules. The computation resources for the traffic signal detection module is
further broken down in Table 4.2.

% Application CPU % System CPU CPU Time (sec)

Traffic Signal Detection 66.57 51.12 1.02

Logging 21.94 16.85 0.34

Image Format Conversions 2.85 2.19 0.04

Communication 1.35 1.04 0.02

Schedule Prediction 0.52 0.40 0.01

Misc. (diplay, etc.) 6.77 5.20 0.10

Total 100.00 76.79 1.53

Table 4.2: Computation resources for the different steps of SignalGuru’s
traffic signal detection algorithm.

% Application CPU % System CPU CPU Time (sec)

Color Filtering 7.71 5.92 0.12

Laplace Edge Detection 3.59 2.76 0.06

Hough Transform 30.55 23.46 0.47

Find max in Accumulator 21.64 16.62 0.33

Misc. 3.07 2.36 0.05

Total 66.57 51.12 1.02

signal schedule prediction takes less than 10ms. For traffic-adaptive traffic signals,

the prediction is based on the SVR models and takes 21ms.

While in this configuration, SignalGuru was taking up only 77% of the system

CPU time, it was not practically possible to further increase the video frame capture

and traffic signal detection frequency. We found that when increasing this frequency

by 20%, the GPS location updates would become very infrequent (<0.1Hz), as

a result of the too high computational load. Such a low GPS location update

frequency had detrimental effects, as SignalGuru’s traffic signal detection was not

activated/deactivated promptly on approaching/leaving a signalized intersection.

The average memory footprint of SignalGuru was 120.0 MB. However, only 20.1 MB,

on average, were kept in actual RAM. The remaining 99.9 MB were assigned by the
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iOS to virtual memory. The iPhone 3GS devices have 256 MB of eDRAM. SignalGuru

thus takes up only ∼8% of the device’s actual RAM resources.

While the communication and memory overheads of SignalGuru are limited, Sig-

nalGuru’s traffic signal detection is a major CPU hog. The video frame capture and

the traffic signal detection frequency could be scaled down to reduce the computation

resources of SignalGuru. However, it is critical to keep it as high as possible so that

the traffic signal schedule prediction error is kept minimal. Therefore, SignalGuru’s

traffic signal detection module should be used judiciously. This is achieved in three

ways:

1. First, the SignalGuru service is spawned on only as many nodes as necessary.

The RegReS middleware takes care of that keeping the aggregate computation

resources across a region at bay.

2. Second, the traffic signal detection module is activated on a carrier only when

necessary. A SignalGuru carrier will try to detect traffic signals only when it

is close enough to an intersection and thus a traffic signal could potentially

be in sight. As explained earlier, the automatic activation/deactivation of the

traffic signal detection module is based on the GPS location of the device and

its distance from the traffic signal.

3. Third, only the potentially useful part of an image is processed for the purpose of

detecting traffic signals. This is achieved with the IMU-based detection scheme.

Thanks to this scheme, the traffic signal detection time is halved.

4.7.6 GLOSA Fuel Efficiency

For evaluating GLOSA, we used a 2.4L Chrysler PT Cruiser ’01 city vehicle. We

measured its fuel efficiency by connecting to its Controller Area Network (CAN) with

a Scan Tool OBD-LINK device. The fuel efficiency was calculated based on the Intake

Manifold Absolute Pressure (IMAP) approach with the help of the OBDwiz software.
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Figure 4.23: GLOSA fuel efficiency evaluation.

The trip starts at P1 and ends at P2 as shown in Figure 4.9, including the three

intersections in our Cambridge deployment.

The driver completed 20 trips, following GLOSA’s accurate advisory (< 1s mean

absolute prediction error12) at odd-numbered trips, and driving normally (without

GLOSA’s advisory) at even-numbered trips. When following GLOSA’s advisory, the

driver was able to avoid most stops (the driver sometimes had to brake because of

pedestrians or cars in front). When not, the driver had to stop from zero to three

times during each of the trips. As shown in Figure 4.23, GLOSA can offer significant

savings reducing fuel consumption, on average, by 20.3% (from 71.1ml to 56.6ml).

In other words, GLOSA improves the vehicle’s mileage, on average, by 24.5% (from

16.1mpg to 20.1mpg).

4.8 Complex Intersections

In this section, we discuss practical issues regarding the operation of SignalGuru in

complex intersections, as well as how SignalGuru can overcome them. In a complex
12For small distances from traffic signals, we found that it is more beneficial to provide the

driver with the transition time instead of the recommended speed. First, for small distances (<50m)
the GPS error is significant and second, the driver can better account for vehicles stopped at the
intersection and time their acceleration appropriately.
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intersection with many traffic signals, SignalGuru must be able to detect the correct

traffic signal and also identify to which vehicular movement the traffic signal being

detected corresponds.

4.8.1 Traffic Signal Detection

In a complex intersection with many traffic signals, SignalGuru will normally still

detect the correct traffic signal, i.e., the one that corresponds to the road segment that

the vehicle is currently on. Normally, a vehicle that is approaching an intersection on

a given road segment will be able to view only the corresponding traffic signal at a

zero-degree angle. The traffic signals of the other road segments may be still within

the camera’s field of view, but will be seen at some angle. At angles > 90 ◦ the traffic

signal bulbs will not be visible. At smaller angles, the bulbs will be visible, but will

recorded on the video frame as ellipses instead of circles. Furthermore, these ellipses

will be partially occluded by the traffic signal housing visors. While SignalGuru can

still detect partially deformed and occluded traffic signals, its Hough transform voting

algorithm will favor the most round and less occluded traffic signal, i.e., the one that

corresponds to the road segment that the vehicle is currently on.

Moreover, information about the exact location of traffic signals at an intersection

can be leveraged to further narrow down the size of the IMU-based detection window.

In this way, both the accuracy and the speed of the traffic signal detection will get

improved. The locations of the traffic signals can be detected and recorded by the

SignalGuru devices themselves.

4.8.2 Traffic Signal Identification

In a complex intersection with more than one traffic signal, SignalGuru needs to

identify which specific traffic signal it is detecting, i.e., to which direction of movement

the detected traffic signal corresponds. While GPS localization can be used to identify
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the intersection, it is often not accurate enough to distinguish between the different

road segments of an intersection. The identification of the traffic signal being detected

is necessary in order to appropriately merge the data detected across different vehicles.

The traffic signal is identified based on the GPS heading (direction of movement)

of the vehicle that is detecting it, as well as the shape of the traffic signal (round,

right/left turn arrow, etc.). The heading of the vehicle is used to identify the road

segment on which the vehicle is located by matching its reported GPS heading (d ◦+δ ◦,

where δ ◦ is the measurement error) to road segment that has the closest orientation

(d ◦). The number and orientation of the intersecting road segments at any given

intersection can either be acquired by mapping information [110] or learnt by clustering

movement traces of SignalGuru-enabled vehicles. Then, for example, a vehicle can tell

that the signal it is detecting is for vehicles that want to turn left and are approaching

the intersection on the road segment that is attached to the intersection at d ◦ degrees

compared to the geographic north.

4.9 Other Possible SignalGuru-enabled Applications

Besides GLOSA, a SignalGuru service that brings traffic signal schedule information to

a driver’s phone can enable several additional novel applications. These applications

can help drivers reduce fuel consumption, reduce environmental impact, reduce travel

time and increase safety.

Each of these applications comes with different requirements in terms of traffic

signal schedule prediction accuracy and how much time in advance the predictions

should be available. We term the latter critical lead-up time. How many seconds in

advance the prediction is actually made available is termed available lead-up time.

The vehicle’s distance from the intersection stop line corresponding to the critical

lead-up time when the vehicle is moving at the maximum allowed speed is termed
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Table 4.3: Application requirements on SignalGuru’s traffic signal predic-
tions.

critical lead- critical accuracy
up time (sec) distance (m) (sec)

Green Light Optimal Speed Advisory 20 270 <5

Traffic Signal-Adaptive Navigation 115 1500 <9

Red Light Duration Advisory ≥ 5 0 <9

Imminent Red Light Advisory 20 300 <5

Red Light Violation Advisory (dry pavement) 1.7 23 <5

Red Light Violation Advisory (wet pavement) 2.7 37 <5

critical distance. Table 4.3 shows the critical lead-up time and distance calculated for

different applications, each assuming a traffic signal phase length (green light duration)

of 47s13, and a speed limit of 30mph ≈ 50km/h.

Potential applications that can be enabled by SignalGuru’s traffic signal schedule

predictions include:

Traffic Signal-Adaptive Navigation: The travel time for a given trip can be

reduced by advising drivers on possible detours that will let them avoid long waits

at red lights. The average waiting time at a traffic signal is several tens of seconds

and can be up to a few minutes [79]. A TSAN application, based on the traffic

signal schedule that SignalGuru predicted, can calculate the travel time savings of

possible detours and make suggestions to the driver accordingly. The critical lead-up

time depends on the structure of the road network. However, predictions that are

available while a vehicle is still five blocks away from a traffic signal (1500m or 115s at

50km/h) should provide enough headway for efficient detours for most road networks.

A prediction error that is less than 20% of a traffic signal’s phase length is desired in

order to avoid suggesting unnecessary detours.

Red Light Duration Advisory: If the GLOSA or the TSAN applications cannot

provide efficient suggestions to the driver, then the driver will have to wait at the
13Average phase length of traffic signals in Bugis, i.e., Singapore’s downtown (Section 4.6.2).

166



traffic signal. In this case, the Red Light Duration Advisory application can advise

the driver on the residual amount of time before the light turns green, in other words,

the amount of time the driver will have to wait. Drivers may then choose to switch

off a vehicle’s engine to save gas and decrease environmental impact. Restarting

one’s engine takes the same amount of fuel as idling for only five seconds [4], so the

prediction critical lead-up time should be at least five seconds to yield benefits. The

prediction accuracy should be significantly better (<20%) than the average red light

waiting time so that drivers are not falsely advised to switch off their engines.

Imminent Red Light Advisory: The Imminent Red Light Advisory application

advises the driver about the residual amount of time before the traffic signal ahead

turns red. This application raises safety concerns, as the drivers may be tempted to

exceed the speed limit in order to cross the intersection while the traffic signal is still

green. Requirements are the same as for GLOSA.

Red Light Violation Advisory: The Red Light Violation Advisory application

warns drivers when they are about to violate a red light. We can use the filtering

and deglitching, as described in the previous sections, to validate and de-noise the red

lights as detected by the camera of the on-board phone. When the signal ahead is red

and the phone’s accelerometer indicates the car is not decelerating, this application

warns the driver, in order to prevent accidents and traffic tickets. The critical lead-up

time can be as low as a few seconds just to allow the driver enough time to brake before

entering the intersection. The critical distance corresponds to a vehicle’s braking

distance, when the vehicle is traveling at 30mph (speed limit).
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4.10 Other Possible Camera-based Services

Besides SignalGuru, windshield-mounted smartphones can support a rich set of novel

collaborative services with their cameras. We briefly describe here four additional

services:

Parking Space Availability Service: Significant amount of fuel and time

resources are wasted in the search of a parking spot in busy city centers [98]. At

the same time, the circling of blocks in search of a parking spot further aggravates

congestion problems. Windshield-mounted smartphone cameras can process captured

images to discover available parking spots and subsequently disseminate information

about their location to drivers that are looking for a free spot. As shown in Figure

4.24, free parking spots can be discovered by detecting features like the wheels of

parked cars and the lines that segment parking spots. Such a system could be used as

a stand-alone service or to augment proposed parking spot discovery systems that are

based on ultrasonic rangefinders [98] or parking spot release reports (Section 3.5.4).

Bus Localization and Arrival Time Service: Services that inform the pas-

sengers about the time that their bus is expected to arrive have become very popular.

However, such services are available in only a few cities as they necessitate the

installation of specialized equipment in the buses.

Windshield-mounted smartphones could be used to support a grassroots bus local-

ization and arrival time service in cities that do not have the necessary infrastructure.

Windshield-mounted smartphone cameras can detect and identify buses by detecting

their license plates and IDs. Bus IDs are often not only printed on both sides (front,

back) of a bus, but also displayed in LED signs. Bright LED signs make the bus

detection and identification task significantly easier. On encountering and identifying

a bus, smartphones can estimate and disseminate the bus arrival time based on the

their location and the prevailing traffic conditions [145].
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Figure 4.24: Parking service enabled by windshield-mounted smartphones
and their cameras. The detected vehicle wheels and parking spot lines
are shown with yellow ovals and lines, respectively. Two free spots are
detected.

Taxi Discovery Service: The search for a taxi is a stressful and often time-

consuming task. In some cities (e.g., Singapore), taxis have LED signs on their roof

that show whether the taxi is free ("TAXI" shown in green) or busy ("BUSY" shown

in red). Windshield-mounted smartphones could detect the color-coded text displays

to discover free taxis and inform prospective passengers about where they can find

one.

Cheap Gasoline Advisory Service: Windshield-mounted smartphone cameras

could detect the large signs that typically gasoline stations have and read off the

gasoline prices. The gasoline prices would then be disseminated and shared with

other vehicles to collaboratively support a service that helps drivers find the cheapest

gasoline around them.

While detecting available parking spots or reading off gasoline prices from a gasoline

station sign may be harder computationally than detecting a traffic signal, the time

constraints are not as tight. Traffic signal detection needs to be fast so that new
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frames can be processed as frequently as possible and the traffic signal transition times

are detected as accurately as possible. Particularly for the cheap gas advisory service,

the time constraints are very loose. A windshield-mounted smartphone could capture

an image and take several seconds or even minutes to process it and detect the prices.

To improve the detection accuracy, still images could be captured instead of the video

frames that we used to increase detection speed for SignalGuru.

4.11 Related Work

Several collaborative systems have been proposed that crowd-source information from

the GPS, accelerometer and proximity sensors of everyday users in order to estimate

traffic conditions [55, 99, 145], detect road abnormalities [33], collect information for

available parking spots [98], compute fuel-efficient routes [44] and provide taxi ride fare

and duration predictions [7]. In [89], Lee et al. propose an application that lets police

track the movement of suspicious vehicles based on information sensed by camera-

equipped vehicles. Other works have also proposed to equip vehicles with specialized

cameras and detect traffic signals with the ultimate goal of enabling autonomous

driving [47], assisting the driver [109], or detecting the location of intersections and

overlaying navigation information [140]. In [26, 151], the authors enforce traffic laws

(e.g., detection of red light runners) by detecting traffic signals and their current status

with stationary cameras affixed to infrastructure. Furthermore, as we discussed in

the introduction, approaches aimed at enabling GLOSA have been based on costly

infrastructure and, hence, failed to grow in scale. To the best of our knowledge,

no other work has proposed to leverage commodity windshield-mount smartphone

cameras, or above all, to predict the future schedule of traffic signals for the purpose

of providing it to users and enabling the proposed set of novel applications.
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Our camera-based traffic signal detection algorithm draws from several schemes

mentioned above [47, 109, 140]. However, in contrast to these approaches that detect

a single target, SignalGuru uses an iterative threshold-based approach for identifying

valid traffic signal candidates. We also propose the IMU-based detection window

scheme that leverages information from smartphones’ accelerometer and gyro devices

to narrow down the detection area, offering significant performance improvements.

In order to be able to detect ill-captured traffic signals under poor ambient light

conditions, previous approaches either use normalized RGB images [109] or estimate

ambient illumination [26]. In contrast to these approaches, we leverage the observation

that LED traffic signals are a light source of a fixed luminous intensity, and provide

mechanisms to perform a one-time automatic adjustment of the smartphone camera’s

exposure setting. In this way, the camera hardware is configured to capture traffic

signal bulbs correctly, regardless of the prevailing ambient light conditions, obviating

the need for additional image processing steps. Last and most important, all these

prior works focus solely on reporting the current status of traffic signals. They are

not concerned with phase transitions and thus do not propose schemes to filter them,

as they are not trying to collate the past traffic signal schedule for prediction of the

future.

4.12 Summary

This chapter demonstrated the potential of RegReS-enabled platforms of collaborating

mobile devices to fully support geo-locality services, without cloud servers and the

associated long-range Internet communications. More specifically, this chapter pre-

sented novel collaborative services that are based on windshield-mounted smartphones

and their cameras while focusing on SignalGuru, a traffic signal schedule advisory
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service. SignalGuru leverages the cameras of windshield-mounted smartphones to

collaboratively detect and predict the schedule of traffic signals.

The case of SignalGuru highlighted the importance of collaboration, adaptation and

the exploitation of smartphones’ rich capabilities. By leveraging the inertial sensors

of smartphones to selectively process parts of the captured images and introducing

lightweight filtering layers, we showed that near real-time and accurate image based

detection is possible on commodity smartphones. Furthermore, thanks to collaboration

and adaptive Support Vector Regression models, SignalGuru could accurately predict

not only pre-timed but also state-of-the-art traffic adaptive traffic signals. On average,

SignalGuru comes within 0.66s for pre-timed traffic signals and within 2.45s for

traffic-adaptive traffic signals. Particularly for the latter, without collaboration and

adaptation, the prediction error would be 4.5× higher.

Many more geo-locality services and associated applications can be supported by

RegReS-enabled platforms delivering significant benefits. Besides the SignalGuru-

enabled GLOSA that helps drivers save, on average, 20% on fuel, SignalGuru’s traffic

signal predictions enable more applications that can help drivers save fuel, reduce their

environmental impact, reduce travel time and increase safety. Furthermore, windshield-

mounted smartphones with their cameras can capture content-rich information of

the road ahead, and besides traffic signals, detect parking spot availabilities, cheap

gasoline stations, free taxis and the current location of city buses.

Overall, this chapter demonstrated the great potential of RegReS-enabled confed-

erations of collaborating mobile devices. As the case of SignalGuru demonstrated,

such platforms are very powerful and can fully support even challenging camera-based

services. In this way, by leveraging the power of mobile device confederations, the

need for cloud servers and long-range communications to reach them is completely

obviated for geo-locality services.
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Chapter 5

Conclusions

This chapter begins by briefly reviewing the main contributions of the thesis in Section

5.1, before discussing some open questions and future research directions in Section

5.2.

5.1 Contributions Summary

This thesis explores challenges that arise in the design of emerging geo-locality and

non-geo-locality mobile services. More specifically, it tackles the poor user experience

problem of the existing mobile cloud service architecture by reducing its need for

costly and slow long-range cellular communications. To reduce long-range cellular

communications, this thesis proposes to leverage mobile device collaboration in order

to enable efficient hosting of services on mobile devices themselves. While there

has been a rich set of work on caching service data and supporting parts of service

functionality on mobile devices for the purpose of reducing the frequency of long-range

communications, the applications of such works have been constrained and often fail

to judiciously exploit the capabilities and resources of mobile devices.

This thesis first analyzes mobile device technology trends and demonstrates which

and how the ever increasing capabilities of mobile devices can be leveraged to effectively
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support, on mobile device themselves, services that have been traditionally thought

to belong to the cloud. To achieve this goal, the thesis introduces two different

service architectures for the two different types of mobile services: 1) traditional non-

geo-locality services, and 2) emerging geo-locality services. To explore the proposed

architectures, a service is extensively evaluated for each. At the same time, the work

in this thesis highlights the importance of collaboration and adaptation in improving

the performance of both these architectures and the services running atop. The lessons

learned from our work will become even more significant as mobile devices become

more and more powerful in terms of computational resources (CPU, memory), storage

capacity, sensing capabilities and communication interfaces.

Overall the primary contributions of this thesis are the following:

1. Non-geo-locality services: The thesis analyzes NVM technology trends and

demonstrates that several traditional mobile services that have so far resided

only within the cloud can be effectively augmented by mobile device-resident

caching architectures (pocket cloudlets) that are based on personal user and

collaboratively-generated community access patterns. As our analysis shows,

NVM may continue experiencing significant and steady improvements in density

for at least ten more years. The abundance in memory capacity of mobile

devices can be used to support pocket cloudlets for a rich set of mobile services,

significantly reducing the need for costly long-range communications and thus

greatly improving user experience. As shown in our evaluation for PocketSearch,

a web search pocket cloudlet, the average user response time is reduced by 62%

and power consumption by 63%. Furthermore, by serving requests locally from

the pocket cloudlet, when possible, the use of costly and increasingly scarce

long-range communications is reduced by 66%.

The impact of this work is very substantial. Not only does this work significantly

improve the performance of a specific popular mobile service (web search), but
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also provides, at the same time, a methodology and architecture to collaboratively

and adaptively guide the selective replication of mobile services on mobile devices.

The example of PocketSearch, in combination with promising NVM scaling

trends, is expected to foster the augmentation of more mobile services with

mobile device-resident caching architectures.

2. Geo-locality services: The thesis first studies the promising trends in com-

puting and networking for mobile devices and then demonstrates that a rich set

of geo-locality services can be fully supported on confederations of collaborating

mobile devices completely obviating the need for slow, costly and potentially

unavailable long-range communications. We identify the five major traits of

geo-locality services when hosted on highly volatile and unreliable networks of

everyday user mobile devices. Furthermore, we provide the first solution that

accounts for all these traits by introducing the service carrier density metric. To

maintain geo-locality services on such volatile and unreliable platforms, our work

proposes and evaluates RegReS, a fully-distributed, collaborative and adaptive

service carrier estimation and maintenance scheme. We show that with collabo-

ration and adaptation, networks of mobile devices can accurately maintain a

targeted service carrier density. The density mean absolute error remains below

16% across a wide range of configurations. Thanks to RegReS, the increased

yet often constrained resources of mobile devices are judiciously used to support

geo-locality services within a region and the need for long-range communications

is completely obviated. In many cases, service access from local storage or over

short-range communications takes significantly less than a second (30ms for our

Parking Availability Service) as opposed to several seconds (> 5s) over 3G.

Besides introducing a new metric (service carrier density) and corresponding

middleware for the collaborative maintenance of geo-locality services, this work

introduces a more general collaborative and adaptive estimation scheme. We
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explore which dynamic factors influence the performance of the estimation

scheme and propose a general model to adapt. At the same time, our work

shows that static schemes fail very badly at tracking the existing density of

service carriers. This raises concerns about the robustness and applicability

of proposed approaches for challenging mobile networks. A collaborative and

above all adaptive scheme, as introduced by RegReS, should be used in dynamic

environments whether the ultimate goal is request routing [38, 42, 89], power

management [156] or service replication like in RegReS. As shown in our results,

non-collaborative and especially static schemes fail very badly at tracking the

status of region-wide parameters, e.g., service carrier density.

3. Collaboration and adaptation: Throughout the thesis, the importance of

collaboration and adaptation is highlighted. Collaboration and adaptation

significantly improve the performance of both the proposed mobile device-resident

architectures and the services running atop. Collaboration almost doubles the

carrier density estimation accuracy of RegReS. Furthermore, without adaptation,

the carrier mean density error goes from 16% up to 41% for the cases tested, and

could further increase arbitrarily in more extreme scenarios. The benefits are

equally pronounced for the SignalGuru service as well. Thanks to collaboration

and adaptation SignalGuru can accurately predict the schedule of both pre-

timed (0.66s) and traffic-adaptive traffic signals (2.45s). Particularly for the

more challenging traffic-adaptive traffic signals, collaboration and adaptation are

crucial. Collaboration improves the prediction accuracy by 78% and adaptation

by an additional 25%. For PocketSearch, collaboratively-generated community

access patterns help improve the hit rate by 2% to 19% depending on the class

of the user. Adaptive cache updates improve the hit rate by 2%. However, as

discussed in Section 5.2.2, we believe that with more frequent updates and more
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input signals to guide the decisions, the benefit of adaptive prefetching could

become significantly higher.

4. Novel grassroots services and benefits: Besides the analysis of the promis-

ing mobile device technology trends, the thesis demonstrates with real-world

deployments the potential of mobile devices to support a rich set of services with-

out cloud servers and long-range communications to reach them. The thesis also

demonstrates the benefits that such grassroots mobile device-resident services

can deliver. SignalGuru, in particular, epitomizes this potential. As this service

illustrates, even camera-based services that were thought to be prohibitively

resource-intensive can be supported on confederations of collaborating mobile

devices. Furthermore, SignalGuru’s traffic signal schedule predictions can enable

several applications to help drivers reduce their fuel consumption (20.3% for

GLOSA), environmental impact and travel time. Last, the novel collaborative

sensing platform that SignalGuru introduced can enable many more services

for the discovery of free parking spots, cheap gasoline stations, free taxis and a

commuter’s current bus location. The societal and environmental benefits of

such services are potentially very substantial.

5.2 Future Work

As mobile devices with short range communications will be becoming increasingly

pervasive (e.g., vehicles with DSRC communication) and long-range communication

bandwidth will become an increasingly scarce resource, the need for device-resident

services will become increasingly pressing. As shown in this thesis, in order to efficiently

and effectively support mobile services on mobile devices, both collaboration and

adaptation are critical. Here, we discuss avenues for future research on these two
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key aspects. We also discuss future work on collaborative services enabled by our

proposed mobile service architectures.

5.2.1 Collaboration

As discussed and evaluated in Chapters 2, 3 and 4, collaboration is of vital importance.

The Pocket Cloudlets architecture depends on mobile users to contribute and share their

personal user models so that community models can be constructed and, subsequently,

cloud service content is selectively cached, ranked and prefetched. RegReS relies on

confederations of mobile devices to collaborative maintain services across time within

a defined region. Opportunistic collaboration is also leveraged to improve the accuracy

of density estimations. Furthermore, collaboration is critical for SignalGuru in order

to enable advance and accurate traffic signal schedule advisory.

When enabling such collaborative ecosystems, several challenges emerge that need

further research:

Incentive Mechanisms and User Policies: Proper incentives need to be pro-

vided to mobile users so that they participate in collaborative service provision. Pro-

posed price- and budget-based schemes [1, 51, 150] that enable multilateral exchanges

can be used as the foundation.

However, incentivizing mobile users will typically be harder and more challenging.

Mobile environments, as opposed to desktop environments, are resource-constrained.

Battery power, compute resources and particularly long-range communications are

limited and often scarce. Every extra packet of communication may also cost extra

and increase the monthly bill of the user. Mobile users will typically have more to

sacrifice when taking part in the collaborative provision of a service. At the same time,

the need emerges to provide the proper tools and interfaces to let users customize

their participation policies and set their own "price" for contributing their device to

the collaborative ecosystem.
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In RegReS, we favored hosting the service on nodes that will be around longer (with

longer estimated residual residence time). Alternatively, collaborative middleware,

like RegReS, could favor nodes that have low credits, i.e., nodes that have barely

participated so far. Alternatively, in a service provision market where services pay

credits to mobile devices that participate in the service maintenance, services may

opt for devices that have a better service provision reputation or charge the minimum

amount of credits for a given service provision quality.

Furthermore, a scheme is needed to control the amount of regional resources (target

carrier density) that services ask from RegReS. Some regional authority could regulate

this. A market-based system in which services have to pay mobile devices for their

hosting could also be an alternative approach. The viability of such approaches needs

further research.

In summary, schemes are necessary to control which entities and to what extent are

allowed to inject collaborative services, how mobile devices will be rated and selected

to host a given service and how mobile users will be incentivized to contribute their

device’s resources.

Security, Privacy, Trust: The potential incentives and resulting attacks of

adversarial and malicious users need to be analyzed on a per service and per application

basis. Based on such analyses, proposed schemes for service security and trust

establishment [90, 131] need to be revisited. At the same time, the more a node

collaborates, the more the node gets exposed and potentially sacrifices its privacy.

Privacy, security and trust should all be safeguarded in order to encourage collaboration.

This can be best achieved on a customized per service and per application basis.

Power Management: Mobile devices are typically battery-powered and operate

on constrained energy budgets. Although RegReS’s collaboration scheme is lightweight

and trades off inefficient long-range communications for short-range communications,

it is not clear that such a mobile service architecture can lead to energy savings; short-
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range communications may be significantly more power-efficient per bit sent or received,

but commercial long-range communications (e.g., 3G) are already employing aggressive

power-saving mechanisms. These mechanisms put the communication interface to sleep

when it is not being used. When in sleep mode, long-range communication interfaces

spend far less power than short-range communication interfaces that are idle as well,

but awake (powered-on but not sending or receiving data). Proposed approaches for

sleep schedule-based energy conservation and lifetime maximization [20, 75, 156] in

sensor networks should be adjusted and integrated in RegReS’s collaborative density

maintenance scheme. While the resulting energy savings depend a lot on the properties

of the service and the underlying mobile device composition, when coupled with such

schemes, short-range communications have great potential of significantly reducing

energy consumption over their long-range counterparts.

5.2.2 Adaptation

Adaptation is critical in highly dynamic environments whether the goal is to track

service carrier density, track search trends or predict the behavior of systems that

adapt to dynamic conditions, e.g., traffic-adaptive traffic signals that adapt to vehicle

flows. The lessons learnt about the importance of adaptation, in general, and adaptive

estimation schemes like the one that this thesis proposed, in particular, should be

employed, when using distributed estimation to perform request-routing decisions

[38, 42, 89], power management [156] or service replication (RegReS). As our results

showed, static estimation-based schemes are highly likely to break when key system

parameters (e.g., node mobility, etc.) change. Proposed estimation-based schemes for

mobile networks should be re-tested under dynamic conditions and made adaptive.

Furthermore, in order to increase the ability of the proposed systems to adapt, more

information could be leveraged. For example, in the case of Pocket Cloudlets, social

network (facebook, twitter, foursquare, etc.) data streams (wall posts, tweets, etc.)
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could be leveraged to detect emerging subjects within a user’s network and prefetch the

corresponding information (search results, web pages, maps, local business information,

etc.) on the user’s phone. Also, the prediction of a given intersection’s traffic signal

schedule could be improved by fusing information about the schedule of neighboring

signalized intersections. Neighboring intersections are sometimes coordinated, i.e.,

the schedules of their traffic signals are schedule highly correlated.

5.2.3 Services

The only non-geo-locality service that this thesis prototyped and evaluated is Pock-

etSearch, a mobile search pocket cloudlet. The cacheability on the Pocket Cloudlet

architecture of the services described in Section 2.2 can be analyzed more thoroughly

and the performance benefits of their implementation as pocket cloudlets can be

evaluated as well.

As regards geo-locality services, this thesis prototyped PAS, SignalGuru and

GLOSA. The plausibility and efficiency of the other novel RegReS-enabled services

envisioned in Chapter 4 will be interesting to explore as well. Furthermore, the impact

of applications, like the SignalGuru-enabled GLOSA, can be tested on a larger scale by

means of detailed microscopic simulation that models driver behavior and interaction

with advisory systems.

This thesis explored geo-locality and non-geo-locality services. Hybrid services and

corresponding architectures will be interesting to explore as well. Some services may

have a strong geo-locality component (data generated within a specific region and

many users accessing within the very same region), but at the same time also have

a potentially less strong yet still significant non-geo-locality component (data often

accessed by users that are farther away) as well. For example, drivers are typically

interested in finding a free parking spot in their vicinity (at most a couple blocks

away). These free parking spots are discovered by other vehicles traveling through the
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same region. This means that a parking service is a good example of a geo-locality

service. However, some drivers may also be interested in learning about aggregate

parking statistics before they drive to a specific area so that, for example, they can

determine if they would be able to easily find a free parking spot and it would thus

be a good idea to use their car, instead of some other means of transportation. A

solution would be to maintain two disjoint and independent parking services, one

as a pocket cloudlet and the other one as a RegReS service. A hybrid architecture,

however, that enables these two related services to interact could potentially constitute

a significantly more effective solution.

5.3 Summary

This thesis explores challenges pertaining to the design of emerging geo-locality and

non-geo-locality mobile services. More specifically, this thesis proposes novel mobile

service architectures that help alleviate the need for costly, slow and scarce long-range

cellular communications, thus, significantly improving the poor mobile user experience.

The Pocket Cloudlets architecture greatly reduces the long-range communication

bandwidth for traditional non-geo-locality services by selectively caching parts of

them on mobile devices. For emerging geo-locality-services, the proposed RegReS

middleware hosts the services fully on mobile devices, completely alleviating the need

for long-range communications. By prototyping and evaluating these novel mobile

service architectures and services running atop them, this thesis demonstrates that

services can be effectively hosted on mobile devices and enable a rich set of novel

applications. Furthermore, this thesis illustrates that the challenges of dynamic mobile

environments can be effectively tackled by means of collaboration and adaptation. I

believe that this work will motivate further research in collaborative mobile device-

resident services, in general, and camera-based services, in particular.
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