
Pocket Cloudlets

Emmanouil Koukoumidis
Princeton University
Princeton, NJ, USA

ekoukoum@princeton.edu

Dimitrios Lymberopoulos
Microsoft Research

Redmond, WA, USA
dlymper@microsoft.com

Karin Strauss
Microsoft Research

Redmond, WA, USA
kstrauss@microsoft.com

Jie Liu
Microsoft Research

Redmond, WA, USA
liuj@microsoft.com

Doug Burger
Microsoft Research

Redmond, WA, USA
dburger@microsoft.com

Abstract
Cloud services accessed through mobile devices suffer from high
network access latencies and are constrained by energy budgets dic-
tated by the devices’ batteries. Radio and battery technologies will
improve over time, but are still expected to be the bottlenecks in
future systems. Non-volatile memories (NVM), however, may con-
tinue experiencing significant and steady improvements in density
for at least ten more years. In this paper, we propose to leverage
the abundance in memory capacity of mobile devices to mitigate
latency and energy issues when accessing cloud services.

We first analyze NVM technology scaling trends, and then pro-
pose a cloud service cache architecture that resides on the mobile
device’s NVM (pocket cloudlet). This architecture utilizes both in-
dividual user and community access models to maximize its hit
rate, and subsequently reduce overall service latency and energy
consumption.

As a showcase we present the design, implementation and
evaluation of PocketSearch, a search and advertisement pocket
cloudlet. We perform mobile search characterization to guide the
design of PocketSearch and evaluate it with 200 million mobile
queries from the search logs of m.bing.com. We show that Pock-
etSearch can serve, on average, 66% of the web search queries
submitted by an individual user without having to use the slow 3G
link, leading to 16x service access speedup.

Finally, based on experience with PocketSearch we provide
additional insight and guidelines on how future pocket cloudlets
should be organized, from both an architectural and an operating
system perspective.

Categories and Subject Descriptors H.4 [Information Systems
Applications]: Miscellaneous

General Terms Design, Experimentation

Keywords Mobile Search, Mobile Cloud, Flash Storage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

1. Introduction
The wide availability of internet access on mobile devices, such
as phones and personal media players, has allowed users to access
various cloud services while on the go. Currently, there are 54.5
million mobile internet users and market analysis shows that this
number will increase to 95 million by 2013 [22], indicating that
mobile devices are quickly becoming the dominant computing plat-
form. As a result, optimizing these devices to better support access
to cloud services becomes critical.

Although most cloud services have been designed to transpar-
ently support a wide range of client devices, the end user experience
for these services can vary significantly across devices. Conversely
to the desktop domain where the connection to any cloud service
takes place over very fast and almost always available links (i.e.,
ethernet), in the mobile domain users rely on cellular radios that
tend to exhibit higher latency and unpredictability. For instance,
most desktop computers can submit a search query to the search
engine and successfully receive the search results in less than a
second. The same task on a high-end smartphone with a 3G con-
nection can take at least one order of magnitude more time (3 to 10
seconds depending on location, device and operator used). When
the 3G radio is not connected or only Edge connectivity is avail-
able, this time can be doubled or even tripled.

Even as the throughput of radio links on mobile devices in-
creases (e.g., 4G), the user response time for the various cloud ser-
vices will not be drastically improved for two reasons. First, while
higher throughput links can be particularly effective for bulk trans-
fers, recent studies [8] have shown that users tend to exchange small
data packets, making link latency be the major bottleneck. Second,
the radio link needs between 1.5 and 2 seconds to wake up from
its standby mode even if it is already connected to the cell tower.
This high startup cost is independent of the radio’s throughput and
is expected to hold even for future generations of radio links.

Radio links impose not only a latency bottleneck, but also a
power bottleneck. Mobile devices are battery operated and the
cellular radio, along with the processor and the screen, is one of the
most power hungry components. The more data is exchanged and
the more time the radio link is active, the lower the battery lifetime
of the mobile device becomes, creating a negative user experience.

While there is such a large speed gap in accessing the inter-
net between mobile devices and desktops, the traditional mem-
ory/storage gap between these two classes of devices is rapidly
fading away. Phones and personal music players currently sup-
port up to 64GB of flash memory and future flash technologies

Figure 1. The GUI of the PocketSearch prototype. Local search
results/ads are instantly displayed in the auto-suggest box as the
user types the query. The GUI of the web search prototype is not
shown due to space constraints.

promise much higher capacities (Section 2). The increasingly avail-
able memory resources on these devices can transform the way mo-
bile cloud services are structured. As more and more information
can be stored on mobile devices, specific parts of or even full cloud
services could be transferred to the actual mobile devices, trans-
forming them into pocket cloudlets.

Pocket cloudlets could drastically improve the mobile user ex-
perience in three major ways. First, since all or portions of the in-
formation resides on the phone, users can instantly get access to
the information they are looking for, eliminating, when possible,
the latency and power bottleneck introduced by the cellular radio.
Furthermore, by serving user requests on the actual device, pocket
cloudlets can mitigate pressure on cellular networks, which is ex-
pected to be a critical resource as mobile internet grows. Second,
since most of the interactions between the user and the service take
place on the mobile device, it is easier to personalize the service
according to the behavior and usage patterns of individual users.
Third, since the service resides on the phone, all the personaliza-
tion information could also be stored on the phone and possibly
protect the privacy of individual users.

For instance, in the case of a search engine, a large part of the
web index, ad index and local business index can be stored on
the phone enabling users to instantly access search results locally
without having to use the cloud. In essence, a mini search engine
could be running on the phone providing real-time search results
to the mobile user. In another setting, the actual web content could
also be cached on the mobile device to provide an instant browsing
experience. Web content that might be of interest to the user could
be automatically downloaded to the user’s phone overnight and
become available during the course of the day.

Independently of what cloud service is replicated on the mobile
device, pocket cloudlets enable a fast and personalized mobile user
experience. In this paper we describe a new architecture of mobile
cloud services that takes advantage of the increasing non-volatile
memory sizes to alleviate the latency and power bottlenecks intro-
duced by cellular radios on mobile devices. First, we show an anal-
ysis on how NVM capacity is expected to increase in the future.
Then we propose the pocket cloudlet architecture that leverages
both community and user behavior to provide an instant mobile
user experience reducing, when possible, overall service latency
and energy consumption.

We then present in detail the design, implementation and eval-
uation of PocketSearch, a pocket cloudlet that replicates a search
and advertisement engine on an actual phone. We analyze 200 mil-
lion queries to understand how mobile users search on their phones,
and then utilize the results of this analysis to guide the design of
PocketSearch. Using a prototype implementation (Figure 1) and
real search query streams extracted from mobile search logs of
m.bing.com, we show that PocketSearch is able to successfully

Flash Other NVM technology
year ’10 ’12 ’14 ’16 ’18 ’20 ’22 ’24 ’26

tech (nm) 32 22 16 11 11 8 5 5 5
scaling factor 1 2 4 8 8 16 32 32 32

chip stack 4 4 6 6 8 8 12 12 16
cell layers 1 1 1 2 2 4 4 8 8

bits per cell 2 3 2 2 2 1 1 1 1

Table 1. Technology scaling trends.

Figure 2. Memory size evolution for high-end smartphones as-
suming the trends shown in Table 1.

serve, on average, 66% of all web search queries submitted by an
individual user. The benefits are twofold. From the user perspec-
tive,two thirds of the queries can be answered within 400ms, which
is 16 times faster when compared to querying through the 3G link.
From the search engine perspective, two thirds of the query load
can be eliminated resulting in significant cost savings and easier
query load balancing during peak times.

2. Mobile NVM Scaling Trends
When it comes to pocket cloudlets, the first question we need to
answer is: “what capacities of NVMs are likely to be available in
future mobile devices?” A closer look at technology scaling trends
helps understand how the capacity of NVM memories in mobile
devices is expected to evolve and get so abundant that it funda-
mentally changes the balance of cloud service implementation and
makes the concept of proactively pushing large amounts of infor-
mation into mobile devices appealing.

Table 1 shows our somewhat conservative technology scaling
projections in the NVM market over the next 16 years. We as-
sume that flash will dominate this market until it runs into charge-
based storage scaling issues in the 2016/2018 time frame. At this
point, we assume it will be replaced with another NVM technol-
ogy more resilient to smaller feature sizes, such as resistive (e.g.,
PCM [5], RRAM [14]) or magneto-resistive memories (e.g., STT-
MRAM [12]).

The first data row of Table 1 shows a projection of how the
number of cells per layer in NVM memory devices is expected to
scale in the form of a scaling factor. During the period in which
flash is used as the NVM technology of choice, it is projected to
double in capacity every two years [9].

In 2018, flash may lose traction due to increasing challenges
in storing state (i.e., electrons) in charge-based cells. A new tech-
nology providing more stable cells at smaller features may at that
point replace flash. Single-layer PCM is already being productized

Pocket Cloudlet Single Item Number of Items
Web Search 100 KB (search result page) ≈ 270,000
Mobile Ads 5 KB (ad banner) ≈ 5,500,000

Yellow Business 5 KB (map tile with business info) ≈ 5,500,000
Web Content 1.5 MB (www.cnn.com) ≈ 17,500

Mapping 5 KB (128x128 pixels map tile) ≈ 5,500,000

Table 2. Number of data items that can be stored in 25.6GB (10%
of the projected NVM size available on low-end smartphones) for
different pocket cloudlets.

as replacement for NOR flash in mobile devices, so it is a good can-
didate. The shift from flash to another technology could cause sig-
nificant disruption in fabrication processes and would likely cause
scaling to stall for one generation. Scaling is likely to resume in
subsequent years until it finally stops in 2022 when industry is ex-
pected to hit 5nm technology. The second row shows chip stacking
projections. Two layers are added every four years until 2022, when
the technology may be mature enough to start making increments
of four layers every four years. The third row shows a progression
of number of layers when cell stacking is employed. Cell stacking
is a technique by which devices are fabricated in multiple layers on
the same silicon base (instead of in independently fabricated chips
that are then combined, as in chip stacking) [6]. The process of tak-
ing a technology from academic demostration to initial production
is typically five years. Given that this technology was demonstrated
in 2009, this technology is likely to be adopted circa 2016 and the
number of layers is likely to double every four years. Finally, the
fourth row shows number of bits per memory cell. This number
should increase in the next few years for flash, but then start to
decrease as feature sizes get smaller, process variation increases
and the average number of electrons per cell drops. In such a set-
ting, even small electron losses may cause cell state to be corrupted,
which in turn forces designers to reduce the number of logic levels,
and therefore bits per cell, to increase the distance between these
levels and better distinguish stored values.

Assuming the trends described above, Figure 2 presents vari-
ous evolution scenarios for NVM parts used in smartphones. Our
projections start with the NVM storage found in a high-end smart-
phone in 2010. We then apply different combinations of scaling and
other capacity-increasing techniques to make a projection of total
NVM capacity in future smartphones. Figure 2 shows that high-end
phones may reach 1 TB of NVM as early as 2018. Considering that
low-end smartphones today have 512 MB of NVM, a ratio of 64-to-
1 when compared to high-end smartphones, we can calculate that
low-end phones may eventually reach 256 GB (16 GB in 2018),
still a respectable amount of storage.

Dedicating only 10% of a 256 GB NVM memory to caching
services results in 25.6 GB of storage available in a mobile device.
This storage could be used by various cloud services to offer an
instant mobile user experience through pocket cloudlets. Table 2
shows the number of data items (i.e., search result pages, web sites,
etc.) that can be stored in 25.6 GB of space for various pocket
cloudlets. A low-end smartphone is projected to be able to store
more than 5 million map tiles or 17000 web sites. To put these
numbers in perspective, our search log analysis indicated that more
than 90% of mobile users visit fewer than 1000 URLs over a period
of several months, which is 17 times fewer than the number of web
sites that we can actually store on the phone. For the mapping
service, assuming that each map tile covers 300x300 meters of
actual earth surface, 5.5 million map tiles can cover the area of a
whole state in the United States. As a result, the projected memory
resources for smartphones could easily sustain the web browsing
and mapping needs of a typical mobile user.

Figure 3. The envisioned architectural support required to trans-
form mobile devices into pocket cloudlets.

3. Pocket Cloudlet Architecture
Enabling mobile devices to efficiently host cloud services poses
various challenges. First, the amount of data to be stored locally
on the device needs to be determined for each cloud service. Even
though the analysis in Section 2 shows that memory resources on
mobile devices will be abundant in the next decade, the amount of
data available on the internet and across the different cloud services
may exceed the available memory resources on a typical smart-
phone. Second, a mechanism to manage the locally stored cloud
data is required as this data might change over time (e.g., web con-
tent changes over time). Third, a storage architecture for efficiently
storing and accessing this large amount of data is needed. Mobile
users need to be able to quickly search and access data across ser-
vices while still having enough space to store their personal data.
Figure 3 shows the infrastructure required to transform mobile de-
vices into pocket cloudlets.

3.1 Data Selection
At a higher level, the data stored locally on the mobile device is
selected based on both personal and community access models.
The access patterns of the individual user to a specific service (i.e.,
web content or web search) are recorded and used to construct a
personal model (e.g., favorite web pages or search topics). At the
same time, the personal models across users are combined together
into a community model that identifies the most popular parts of the
cloud service data across all users. Both personal and community
models are then used to identify the most frequently accessed parts
of the cloud service data that is or might be of interest to the
individual user.

3.2 Data Management
The locally cached cloud service data needs to get updated peri-
odically (e.g., nightly, weekly or monthly). Updates occur when
the device has access to power resources and high bandwidth links
(i.e., charging and connected to WiFi or tethered to a desktop com-
puter). Periodic updates based on the charging state of the device
are appealing, but can only be effective for relatively static data.
That is, data that is not very frequently updated. For instance, the
search index or the map tiles used for search and mapping services

(a) (b)

Figure 4. CDF plots of the (a) query volume and (b) clicked search result volume.

are examples of static data that could be updated periodically and
only when the mobile device is charging without hurting the qual-
ity of the cloud service. However, not all cached data tend to be
static. For instance, web content such as news and stock prices is
dynamic in nature and tends to be accessed by individual users
several times within a day. For this type of pocket cloudlets, real
time updates over the radio link are required to guarantee freshness
of the cached data. However, performing bulk updates over power
hungry and bandwidth limited radio links is inefficient, if not im-
possible. Luckily, it turns out that the amount of dynamic data that
is repeatedly accessed by mobile users tends to be small. For ex-
ample, the analysis of 200 million mobile search queries submitted
by hundreds of thousands of users showed that 70% of web visits
tend to be revisits to less than a couple of tens of web pages for
more than 50% of the users. As a result, instead of enforcing inef-
ficient bulk updates over the radio link, only the small set of most
frequently visited data (identified by the access patterns of the in-
dividual user) is updated in real time.

3.3 Architectural Implications
At a lower level, each cloud service owns its own storage space
on the mobile device and uses it to store the necessary data. For
instance, the storage can mirror web pages in the case of the
web content service, and map tile snapshots and local business
information in the case of mapping and navigation services. Since
the amount of data required by these services is expected to be
large and should always be available on the device even after a
power down, bulk non-volatile storage such as NAND flash is a
suitable memory technology. Besides storing the actual data on
the mobile device’s NVM, each cloud service also maintains an
index of its data in fast volatile memory (DRAM). The index
enables instant retrieval of the required data from bulk storage.
Given the characteristics of current memory technologies, the main
memory of the phone (i.e., DRAM) is able to provide the necessary
performance and density for storing the different indexes.

However, as new memory technologies such as PCM mature,
this two-tier memory structure might slowly evolve into a three-
tier structure as shown in Figure 3. PCM memory could become
the intermediate tier by filling the performance and storage density
gap between DRAM and NAND flash. In practice, PCM could be
seen as fast bulk storage when compared to NAND flash, making
it an ideal technology for storing the data indexes. While slower
than DRAM, PCM has the advantage of being non-volatile and
significantly faster than NAND flash. Being able to store data
indexes in PCM eliminates the need to commit to and load the

index from NAND after each power cycle of the mobile device.
Given that the data required by the cloud services might be in the
order of tens or even hundreds of gigabytes, the size of the data
indexes can reach gigabytes, making its transfer between flash and
main memory extremely time consuming. By introducing a PCM-
based layer, all data indexes could become instantly available on
the device at boot time offering a much faster user experience. At
the same time, the DRAM tier could be used to cache the most
frequently accessed parts of the data indexes in order to provide the
fastest user experience when possible.

Figure 3 only shows the high level architectural requirements to
enable mobile cached cloud services. In practice, however, several
lower level challenges and design tradeoffs can arise. In the next
sections, we present these challenges and tradeoffs for an example
cloud service that focuses on mobile search and advertisement.

4. Cacheability of Mobile Search
Before designing and implementing a pocket cloudlet for a cloud
service, it is important to study its cacheability. For instance, the
real impact of a search pocket cloudlet depends on the fraction of
the query volume that can be successfully served locally on the
device. To answer this question we analyzed 200 million queries,
submitted to m.bing.com over a period of several consecutive
months in 2009. The query volume consisted of web search queries
submitted from mobile devices such as phones and personal music
players. Every entry in the search logs we analyze contains the raw
query string that was submitted by the mobile user as well as the
search result that was selected as a result of the submitted query.
No personal information, such as location, is included in the logs.

4.1 The Mobile Community Effect
First, we examine the community of mobile users as a whole to
discover caching opportunities across users. From the web search
logs, we extract the most popular queries submitted and the most
popular search results clicked by the mobile users. Figures 4(a)
and 4(b) show the cumulative query and search result volume as
a function of the number of most popular queries and search results
respectively. When looking across all data, it turns out that the 6000
most popular queries and the 4000 most popular search results
are responsible for approximately 60% of the query and search
result volumes respectively. In other words, there is a small set of
queries and search results that is popular across all mobile users.
This suggests that if we store these 6000 queries and 4000 search
results locally on the phone we could theoretically answer 60% of

Figure 5. CDF plot of the repeatability of mobile search queries
across individual users over a 1-month period.

the overall queries submitted by mobile users without having to use
the radio link.

Note that these 4000 search results might not always point
to static web pages. However, while some web content might be
highly dynamic, the search results and queries that point to it can
be relatively static. For instance, the CNN web page (www.cnn.
com) is updated every minute and sometimes even more frequently.
However, the way mobile users reach this dynamic web page is
relatively static (e.g., search for ”cnn” or ”news” and then click on
the static search result that points to the CNN web page).

Similar popularity trends exist for desktop queries. However,
mobile queries are significantly more concentrated than desktop
queries. For instance, the first 6000 queries represent 60% of the
query volume in the mobile domain but less than 20% of the query
volume in the desktop domain [19].

We further divide the queries in two different categories, navi-
gational1 (i.e., ”youtube” or ”facebook”) and non-navigational (i.e.,
”michael jackson”), and we study the same trends for each cate-
gory. As Figure 4 shows, both query types follow the same trends
but navigational queries are significantly more concentrated com-
pared to non-navigational queries. For instance, the first 5000 nav-
igational queries are responsible for 90% of the navigational query
volume while the same number of non-navigational queries ac-
counts for less than 30% of the non-navigational query volume.

Another interesting observation comes from comparing the re-
sults between Figures 4(a) and 4(b). To achieve a cumulative vol-
ume of 60%, 50% more queries are required compared to the num-
ber of search results (6000 queries vs 4000 search results). The
search logs show that users search for the same web page in many
different ways. For instance, mobile users often either misspell
their queries because of the small keyboards they have to interact
with (i.e., ”yotube” instead of ”youtube”) or purposely change the
query term to reduce typed characters (i.e., ”boa” instead of ”bank
of america”). However, even though a misspelled or altered query
is submitted, the search engine successfully provides the correct
search result and thus a successful click through is recorded. As a
result, a popular webpage is, in general, reached through multiple
search queries.

Figures 4(a) and 4(b) also show the same information when
considering the queries and search results that were submitted
by featurephone (low-end mobile devices with limited browsers
and internet capabilities) and smartphone users in isolation. Even

1 A query is classified as navigational when the actual query string is a
substring of the clicked URL (i.e., ”youtube” and www.youtube.com)

Figure 6. Overview of the PocketSearch cloudlet.

though the exact same observations hold in both cases, queries
and search results that are accessed over feature-phones are in
general more concentrated when compared to smartphones. This
is an artifact of the limited user interfaces found on feature-phones
that make web access a challenging task.

4.2 The Individual Mobile User Effect
Next, we examine personal query traces to discover caching oppor-
tunities within the search habits of individual users. In particular,
we study how often individual users repeat queries. We call a query
a repeated query only if the user submits the same query and clicks
on the exact same search result. Figure 5 shows the percentage of
individual mobile users as a function of the probability of submit-
ting a new query within a month. Approximately 50% of mobile
users will submit a new query at most 30% of the time. Thus, at
least 70% of the queries submitted by half of the mobile users are
repeated queries. Figure 5 also shows this trend for both naviga-
tional and non-navigational queries.

Consequently, knowing what the user searched in the past pro-
vides a very good indication of what the user will search for in the
future. Again, this trend of repeating queries is not unique to mo-
bile queries. Desktop users also tend to repeat queries, but not as
frequently as mobile users. Recent studies have shown that desk-
top users will repeat queries on average 40% of the time [28] as
opposed to 56.5% for mobile users (Section 4.2.1).

5. PocketSearch Architecture
Given the mobile search trends that the analysis of the web search
logs highlighted, we designed and implemented PocketSearch, a
mobile search pocket cloudlet that lives on the phone and is able
to answer queries locally without having to use the 3G link2. The
goal of the PocketSearch architecture is to capture the locality of
mobile search as demonstrated in Section 4, and to be computa-
tionally tractable so that it can efficiently run on a mobile device.
PocketSearch accomplishes both of these goals making its under-
lying architecture a template for other pocket cloudlet services.

Note that PocketSearch is not aiming to replace the actual search
engine. Instead, its goal is to assist the search engine to provide a
much faster mobile search experience in a way that is transparent
to the user. For instance, most of the high-end smartphones today
can automatically provide query suggestions to the user almost
instantly and as the user is typing his query. PocketSearch’s ability
to retrieve search results fast, can make this experience richer
by enabling the display of actual search results along with auto-
suggest query terms in the auto-suggest box in real time (Figure
1). If users are not interested in any of these search results, they
can access the latest set of search results through the 3G radio by

2 PocketSearch only stores search results and not the actual web content
that these results point to. Another cloudlet responsible for web content
caching/pre-fetching (i.e., PocketWeb) running along with PocketSearch
could be used to serve the actual web content.

Query Search Result Volume
michael jackson www.imdb.com/name/nm0001391/bio 106

movies www.fandango.com 95 ∗ 104
michael jackson www.azlyrics.com/j/jackson.html 90 ∗ 104

ringtones www.myxer.com 50 ∗ 104
pof www.plentyoffish.com 20 ∗ 104
...

Total Volume 50 ∗ 105

Table 3. A list of query-search result pairs sorted by their volume
is generated by processing the mobile web search logs over a time
window (i.e., a month). The volume numbers used in this table are
hypothetical.
selecting the query term provided by auto-suggest or by entering
the full query term on their own.

The PocketSearch cloudlet can be used to store web search
results, local businesses as well as mobile advertisements (Figure
1). However, in the interest of space and to describe the underlying
architecture in greater clarity, we limit this paper into describing
the proposed caching system in the context of web search caching.

PocketSearch consists of two discrete but strongly interrelated
components; the community and the personalization components
(Figure 6). The community part of the cache is responsible for stor-
ing the small set of queries and search results that are popular across
all mobile users. This information is automatically extracted from
the search logs and is updated overnight every time the mobile de-
vice is recharging, making sure that the latest popular information
is available on the mobile device. The community part serves as
a warm start for the cache and enables PocketSearch to instantly
provide search results without requiring any previous knowledge
of the user.

The personalization part of the cache monitors the queries en-
tered as well as the search results clicked by the user and performs
two discrete tasks. First, it expands the cache to include all those
queries and search results accessed by the user that did not initially
exist in the community part of the cache. In that way, the cache can
take advantage of the repeatability of the queries submitted by the
mobile users to serve as many queries as possible locally on the
mobile device. Second, it collects information about user clicks,
such as when and how many times the user clicks on a search result
after a query is submitted, to customize ranking of search results to
user’s click history.

When a query is submitted, PocketSearch will first perform a
lookup in the cache to find out if there are locally available search
results for the given query. In the case of a cache hit, the search
results are fetched from the local storage, ranked based on the past
user access patterns recorded by the personalization part of the
cache, and immediately displayed to the user. In the case of a cache
miss, the query is submitted to the search engine over the 3G radio
link.

Realizing the architecture shown in Figure 6 on an actual mobile
device poses several challenges:

Content Generation: A methodology is required to decide
which and how many queries and search results should be included
in the cache.

Storage Architecture: An efficient way to store and quickly
retrieve the search results on the mobile device is needed. Memory
overhead should be minimized to prevent performance degradation
on the device and provide ample storage space for user’s personal
files. At the same time, PocketSearch should be able to quickly
locate and retrieve the search results to minimize user response
time.

Personalized Ranking: The user’s search patterns provide im-
portant information about the individual user’s interests. Pocket-
Search should record and leverage this information over time to
personalize the search experience.

Figure 7. Cumulative query-search result volume as a function of
the most popular query-search result pairs.

Figure 8. PocketSearch’s DRAM and flash overhead for different
query-search result aggregate volumes.

Cache Management: A scalable mechanism for regularly up-
dating the cache contents is required. Having available the most
up-to-date set of popular queries and search results on the phone is
necessary for maximizing the number of queries that can be served
by PocketSearch.

5.1 Cache Content Generation
The search results stored in the cache are extracted directly from
the mobile search logs. The goal of this process is to identify the
most popular queries and search results that are of interest to the
mobile community.

A set of triplets in the form <query, search result, volume>
are extracted from the search logs and sorted based on volume
(Table 3). The term query corresponds to the query string submitted
to the search engine, the term search result corresponds to the
search result that was selected after entering the query, and the term
volume represents the number of times in the search logs that the
specific search result was selected after entering the query string
query. For instance, the first row in Table 3 can be interpreted as
follows: In the last month, there were 1 million searches where
the search result www. imdb. com/ name/ nm0001391/ bio was
selected after the query ”michael jackson” was submitted.

The number of triplets in Table 3 can be in the order of tens or
hundreds of millions. Storing all of them would require significant
memory resources that a phone might not be able to provide or a
user might not be willing to sacrifice.

Deciding which entries to store is straightforward. To maximize
the query volume that can be served by the cache, we should always
store the most popular pairs of queries and search results indicated
by the top entries of Table 3.

Figure 9. Overview of PocketSearch’s storage architecture.

Deciding how many of the most popular query-search result
pairs to store is a more complicated process. We select the number
of query-search result pairs to cache based on either a memory or
cache saturation threshold.

Memory (NAND flash or DRAM) Threshold: Starting from
the top entry in Table 3, we run down through its entries and
continuously add query-search result pairs until a specific flash
or DRAM memory size threshold Mth is reached. This threshold
can be set by either the phone itself based on its available memory
resources or by the user, depending on how much storage space and
memory the user is willing to sacrifice for PocketSearch.

Cache Saturation Threshold: Starting from the top entry in
Table 3, we run down through its entries and continuously add
query-search result pairs until we reach a query-search result pair
with a normalized volume lower than a predetermined threshold
Vth. The normalized volume of a query-search result pair is gener-
ated by dividing this pair’s volume by the total volume of all query-
search result pairs in the search logs. For instance, the normalized
volume of the first query-search result pair in Table 3 is equal to:
106/5 ∗ 106 = 0.2.

The value of the cache saturation threshold is illustrated in Fig-
ure 7. It is apparent that the value of adding query-search result
pairs quickly diminishes. In particular, slightly increasing the ag-
gregate volume from 58% to 62% requires to double the amount of
query-search result pairs from 20000 to 40000.

In practice, the mobile web search log analysis we performed
showed that the cache saturation threshold will be quickly reached
before PocketSearch stretches the memory or storage resources
available on the phone. This can be seen in Figure 8 that shows the
size of DRAM and flash required by PocketSearch as a function
of the aggregate query-search result volume represented by all
the pairs stored in the cache. It is clear that the saturation point
of the cache is quickly reached when the most popular query-
search result pairs that correspond to approximately 55% of the
cumulative query-search result volume has been cached. At this
point, the cache requires approximately 1MB of flash and 200KB of
DRAM, which accounts for less than 1% of the available memory
and storage resources on a typical smartphone.

Independently of which threshold is used (memory or cache
saturation), this methodology identifies the n top entries in Table
3. Each of these n top query-search result pairs is then associated
with a ranking score that is produced by normalizing its volume
across all search results that correspond to the query. For instance,
in the case of query ”michael jackson” in Table 3, the ranking score
for the imdb search result is equal to 106/1.9∗106 = 0.53 and the

Figure 10. The hash table data structure used to link queries to
search results.

score for the azlyrics is 9 ∗ 105/1.9 ∗ 106 = 0.47. The generated
<query,search result,score> triplets can now be used to build the
cache on the phone.

Extracting PocketSearch’s cache contents directly from the mo-
bile search logs provides several advantages. First, even though
there might be tens or even hundreds of search results available
for a given query, we only cache these search results that are pop-
ular across all mobile users, limiting the amount of memory re-
sources required. Second, each query and search result pair ex-
tracted from the search logs is associated to a ranking score, en-
abling the phone to rank search results locally. Third, by processing
the mobile search logs we automatically discover the most com-
mon misspellings and shortcuts of popular queries, enabling Pock-
etSearch to cache search results for these cases. As a result, queries
such as ”pof”, and ”boa” can now be served locally on the phone by
instantly displaying search results such as www.plentyoffish.
com and www.bankofamerica.com respectively.

5.2 Storage Architecture
The extracted set of <query,search result,score> triplets must be
efficiently stored on the phone. Storage efficiency is defined in
two ways. First, the memory resources required to store the search
results should be as low as possible to permit many pocket cloudlet
services to concurrently run. Second, the time it takes to retrieve,
rank and display search results after the user enters a query should
be as low as possible.

Figure 9 provides an overview of PocketSearch’s storage archi-
tecture. It consists of two components, a hash table and a custom
database of search results. The hash table lives in main memory
and its role is to link queries to search results. Given a query the
hash table can quickly identify if we have a cache hit or a cache
miss. In the case of a cache hit, the hash table provides pointers
to the database where the search results for the submitted query
are located. Along with each search result pointer, the hash table
provides its ranking score, enabling PocketSearch to properly rank
search results on the phone.

The custom database of search results resides in flash and its
role is to store all the available search results so that they occupy
the least possible space and they can be quickly retrieved. The data
stored in the database for each search result includes all the nec-
essary information for generating the same search user experience
with the search engine: the actual web address, a short description
of the website and the human readable form of the web address.

Over time and as the user submits queries and clicks on search
results, PocketSearch updates both the hash table and the database
of search results. Every time the user clicks on a search result, its
ranking score is properly updated in the hash table. In addition, if
a new query or a new search result is selected that does not exist in
the cache, both the hash table and the database are properly updated
so that this query and search result can be retrieved from the cache
in the future.

Figure 11. The memory footprint of the hash table for different
number of search results per hash table entry.

Figure 12. Average time to retrieve two search results from the
database as a function of the number of files used to store the search
results. The vertical bars represent the deviation of the access time
over 10 consecutive experiments.

5.2.1 Query Hash Table
Figure 10 shows the structure of the hash table used to link queries
to search results. Every entry in the hash table corresponds to
one and only one query and has 4 fields. The first field contains
the hash value of the query string that this entry corresponds to.
The next two fields are of identical type and represent two search
results associated to the query (SR #1 and SR #2 in Figure 10.).
As it is explained later in detail, only two search results are stored
per entry to minimize hash table’s memory footprint. Each search
result in the hash table is represented by a pair of numbers. The
first number corresponds to the hash value of the web address of
the search result. This value is used to uniquely identify a search
result and, as it will be described in the next section, is used as a
pointer to retrieve the information associated to the search result
(short description, web address etc.) from the database. The second
number corresponds to the ranking score of the search result. The
last field of each entry in the hash table is a 64-bit number that is
used to log information about the two search results in this entry.
Currently, we use only one bit for each search result to indicate if
the user has ever accessed the specific query-search result pair. The
rest of the flag bits are reserved for future purposes.

In general, given a set of <query,search result,score> triplets
the hash table is generated as follows. For every unique query
in the set of triplets we identify all the search results associated
to this query. An entry is created in the hash table for the query
and search results are added in descending order of score. If more
than two search results are associated to the same query, additional
entries are created in the hash table by properly setting the second
argument of the hash function (i.e., ”michael jackson” query in
Figure 10).

This approach of linking queries to search results highlights two
important design decisions that were influenced by the properties
of the <query,search result,score> triplets extracted from the mo-
bile web search logs. First, the number of search results linked to a
query in a hash table entry affects the memory footprint of the hash

Figure 13. The 32-file custom database and illustration of the
process of retrieving a search result.

table. This is illustrated in Figure 11 that shows the memory foot-
print of the hash table for different numbers of search results stored
per hash table entry. The smallest memory footprint is achieved
when two search results are stored per hash table entry.

Second, the way queries are linked to search results can affect
the storage requirements of the database of search results. The
simplest and fastest approach to retrieving and displaying search
results to the user would be to store them in a single HTML file.
Even though this approach would simplify the structure of the hash
table, it would significantly increase the flash memory required to
store them. The reason is that most of the search results are shared
across a large number of queries. The analysis of the logs indicates
that only 60% of the search results in PocketSearch are unique. If
a single search result page were to be stored for every query, then
40% of the search results would have to be stored at least twice.
To avoid wasting flash resources, we opted to store each search
result once and then link individual queries to each search result
independently. Besides saving space, this approach also enables
PocketSearch to easily add/remove search results to/from the hash
table and update the ranking score of search results over time.
As it will be shown in Section 6, the overhead introduced by this
approach in terms of user response time is negligible.

5.2.2 Search Results Organization
Search results are stored in flash using a custom database of plain
text files to ensure portability of PocketSearch across different
mobile platforms. For every search result, we store its title, which
serves as the hyperlink to the landing page, a short description of
the landing page and the human readable form of the hyperlink
(Figure 13).

The amount of memory required to store the information associ-
ated to a search result into a file is, on average, 500 bytes. However,
the actual memory space required might be significantly higher due
to the internal structure of flash chips. Flash memories are orga-
nized in blocks of fixed size that are usually equal to 2KB, 4KB
or 8KB depending on the size of the chip. If we store a 500 bytes
file containing a single search result in flash memory, then this file

Figure 14. Overview of PocketSearch’s updating process.

will occupy 4, 8 or 16 times more flash space than its actual size
depending on the block size that is used.

In order to avoid flash fragmentation, multiple search results
should be aggregated and stored into as few files as possible. How-
ever, storing a large number of search results into a single file could
increase the time it takes PocketSearch to locate and retrieve a
search result and, thus it could hurt the response time of the cache.
As a result, the way search results are aggregated into files and or-
ganized within a file is critical for minimizing both, flash fragmen-
tation and cache response time. By evaluating different database
organizations (Figure 12) we found that a number of 32 database
files constitutes the best tradeoff between flash fragmentation and
user response time.

Figure 13 shows how search results are organized within a
database file when 32 database files are used. Each search result
is assigned to one of the 32 files based on the hash value of its
web address. In particular, the remainder of the division of the hash
value with the number of files in the database (a number between
0 and 31) is used to identify the file where the search result should
be stored.

The first line in each of the 32 database files contains pairs of the
form (hash value, offset). The offset represents the actual offset
from the beginning of the file where the information for the search
result represented by the hash value is located. By parsing the first
line of a database file we can identify where each search result
stored in this file is located. Whenever the user clicks on a search
result that is not already cached, PocketSearch will add the search
result at the end of the database file and augment the header of this
file with the (hash value, offset) pair for this search result.

5.3 Personalized Ranking
By monitoring user clicks over time, the personalization compo-
nent of the cache is aware of when and how many times the user se-
lects a search result after a given query is submitted. PocketSearch
uses this information to incrementally update the ranking score of
the cached search results to offer a personalized search experience.

Assume that for a query Q there are two search results R1 and
R2 available in the cache. Every time the user submits the query Q
and clicks on the search resultR1, PocketSearch updates the scores
S1 and S2 for the two search results R1 and R2 respectively, as
follows:

S1 = S1 + 1 (1)

S2 = S2 ∗ e−λ (2)
The ranking score of the selected search result is increased by
1 (Equation (1)), the maximum possible score of a search result
extracted from the mobile search logs. In that way, we always
favor search results that the user has selected. Note that if this
search result did not initially exist in the cache (selected after a

cache miss), then a new entry in the hash table is created that
links the submitted query to the selected search result and its score
becomes equal to 1. At the same time, the ranking score for the
unselected search result is exponentially decreased 3 (Equation (2)).
This enables PocketSearch to take into account the freshness of user
clicks. For instance, if search result R1 was clicked 100 times one
month ago and search result R2 was clicked 100 times during last
week, then the ranking score for R2 will be higher.

Using Equations (1) and (2), the ranking score of the search
results, at any given time, reflects both the number and freshness of
past user clicks. In practice, any personalization ranking algorithm
[27],[28] could be used with the proposed cache.

5.4 Cache Management
Figure 14 provides an overview of the mechanism used to update
the community component of the cache. The phone transmits to the
server its current version of the hash table. The server runs through
the hash table and removes all the query-search result pairs that
have not been accessed by the user in the past. This can be easily
done by examining the flags column in the hash table (Figure 10).
The query-search result pairs that have been accessed by the user in
the past are only removed from the cache when their ranking score
becomes lower than a predetermined threshold (i.e., the user hasn’t
accessed the search result over the last 3 months).

At the same time, the server periodically (i.e., daily) extracts
the most popular queries and search results from the mobile search
logs as described in Section 5.1, and adds them to the hash table.
During this process, conflicts might arise in the sense that a query-
search result pair that already exists in the hash table (previously
accessed by the user) might re-appear in the popular set of queries
and search results extracted on the server. The conflict is caused
when the ranking score stored in the hash table is different from the
new ranking score computed on the server based on the search log
analysis. PocketSearch resolves these conflicts by always adopting
the maximum ranking score.

After the hash table has been updated, the server creates the
necessary patch files for the database files that live on the phone.
The new hash table and the 32 patch files are transmitted to the
phone and the new cache becomes available to the user. Note that
the amount of data exchanged between the phone and the server
will usually be less than 1.5MB given that PocketSearch requires,
on average, approximately 200KB for storing the hash table and
1MB for storing the search results (Figure 8).

6. PocketSearch Evaluation
First, we use the prototype implementation to quantify the amount
of time required to serve a search query through PocketSearch
and compare its performance to that of the different radio links
available on the phone. Second, we extract anonymized search
query streams from the m.bing.com search logs and run them
against PocketSearch to quantify what fraction of the query volume
of an actual user can be served locally on the phone.

6.1 Cache Hit Performance
All of the measurements presented in this section were acquired
using the prototype PocketSearch implementation on a Sony Er-
icsson Experia X1a cell phone running Windows Mobile 6.1 con-
nected to AT&T’s network. (Figure 1). To measure how fast queries
are served using PocketSearch and the different radios available on
the phone (Edge, 3G, 802.11g), we randomly selected 100 differ-
ent queries for which cached search results were available. In every
experiment, each of the 100 queries was submitted 100 times and
the average user response time was calculated.

3 The parameter λ controls how fast the ranking score is decayed.

(a)

(b)

Figure 15. (a) Average search user response time per query. (b)
Average energy per query.

Operation Average Time Percentage
(ms)

Hash Table Lookup 0.01 ≈ 0%
Fetch Search Results 10 2.7%
Browser Rendering 361 96.7%

Miscellaneous 7 1.7%
Total 378 100%

Table 4. PocketSearch’s user response time breakdown
User response time is defined as the elapsed time from the

moment that the query is submitted (search button is clicked in
Figure 1) to the moment that the embedded browser object in the
application has completed rendering the search results web page.

In the experiments where the PocketSearch cache was used to
serve queries, a cache containing all the query-search result pairs
that account for 55% of the cumulative query-search result volume
over a period of several months was used (Figures 7 and 8). This
cache included approximately 2500 search results occupying 1MB
of flash space as described in Section 5.2.2.

6.1.1 Search User Response Time
Figure 15(a) shows the average user response time per query when
the PocketSearch cache or one of the radios on the phone is used.
On average, PocketSearch is able to serve a query 16 times faster
than 3G, 25 times faster than Edge and 7 times faster than 802.11g.
Note that even though 802.11g can provide a low user response
time that is slightly higher than 2 seconds, it has a major drawback.
Due to its high power consumption, 802.11g is rarely turned on and
connected to an access point on a continuous basis. As a result, in
practice, 802.11g is not instantly available and requires extra steps
that introduce delay and unnecessary user interaction.

Table 4 shows the breakdown of PocketSearch’s user response
time in the case of a cache hit. 96.7% of the time it takes Pocket-
Search to serve a query is spent at the browser while rendering the
search results web page. The time it takes the cache to locate and
retrieve search results is approximately 10ms and it accounts for
only 3.3% of the overall user response time.

Furthermore, the time it takes PocketSearch to look up its hash
table and determine if a query is a cache hit or a cache miss is only
10µs (Table 4). Therefore, in the case of a cache miss, the overall

Figure 16. Total time and power consumption for serving 10 con-
secutive queries through PocketSearch (top) and the 3G radio (bot-
tom).

Navigation user response time
PocketSearch 3G Speedup over 3G

Lightweight Page 15.378s 21.048s 28.7%
Heavyweight Page 30.378s 36.048s 16.7%

Table 5. Navigation user response time for PocketSearch and 3G
for two example webpage load times.

user response time will only be increased by 10µs, a negligible
increase given that any radio on the phone requires several seconds
to serve a search query.

6.1.2 Navigation User Response Time
By reducing search user response time, PocketSearch manages to
also improve the overall navigation user response time, that in-
cludes both the time it takes the user to first search the web as well
as the time to download the actual webpage. Table 5 shows the
actual navigation time for two representative pages, a lightweight
version and a heavyweight version that take 15 seconds and 30 sec-
onds respectively to be downloaded and rendered over 3G. When
PocketSearch serves the search results, the user can access the de-
sired webpage up to approximately 29% faster than when querying
through the 3G link.

6.1.3 Energy Consumption
Figure 15(b) shows the average energy consumed by the phone
per query when PocketSearch or one of the radios on the phone
is used. PocketSearch is on average 23 times more energy efficient
than 3G, 41 times more energy efficient than Edge and 11 times
more energy efficient that 802.11g. Note that the gap in the energy
efficiency between PocketSearch and the different radios on the
phone is larger than the corresponding gap in the user response
time shown in Figure 15(a). This performance gap is justified by
PocketSearch’s ability to conserve energy in two ways (Figure 16).
First, no data are being transmitted or received in the case of a
cache hit, and thus the overall power consumption of the phone
remains low (900mW vs 1500mW in Figure 16). Second, since
PocketSearch achieves a user response time that is an order of
magnitude lower compared to when the radios on the phone are
used (4 seconds vs 40 seconds in Figure 16), the per query energy
dissipation is significantly lower for PocketSearch.

6.2 Cache Hit Rate Performance
To quantify the cache hit rate achieved by PocketSearch for a typ-
ical user, we used anonymized search query streams from the mo-

User Class Monthly % of Users
Query Volume

Low Volume [20,40) 55%
Medium Volume [40,140) 36%

High Volume [140,460) 8%
Extreme Volume [460,∞) 1%

Table 6. Classes of users and their characteristics.

bile search logs. To ensure a representative and unbiased selection
of search query streams, we classified users in 4 different classes
based on their monthly query volume. Table 6 shows the differ-
ent user classes and the percentage of users in the mobile search
logs that belongs to each class. Note that we ignore users that sub-
mit fewer than 20 queries per month for two reasons. First, Pock-
etSearch is targeting users that frequently access the internet and
search the web. Second, as higher-end smartphones with advanced
browsing capabilities become more and more available, the average
monthly query volume submitted by individual users will increase
beyond the threshold of 20 queries per month.

For the experiments described in this section, we randomly
selected 100 anonymized users from each class shown in Table 6
and extracted their search query streams from the mobile search
logs over a period of one month. Each of the 400 search query
streams was replayed against the PocketSearch cache that was
generated using the mobile search logs of the preceding month. The
resulting cache contained approximately 2500 search results that
corresponded to 55% of the cumulative query-search result volume
in the search logs. Note that the data used to build the cache and the
data used to extract the 400 query streams were non-overlapping.

6.2.1 Hit Rate Results
Figure 17 shows the average hit rate for each user class described
in Table 6. On average, 65% of the queries that an individual
user submits are cache hits, and can be served 16 times faster. By
examining Figure 17, it becomes apparent that the cache hit rate
increases with the monthly query volume. PocketSearch achieves
a cache hit rate of approximately 60% for the low volume class
which immediately jumps to 70% for the medium volume class
and to 75% for the high and extreme volume classes.

Figure 17 also shows the average cache hit rate for every user
class in the cases where PocketSearch is using only either the
community or personalization component of the cache. When only
the community component of the cache is used, new queries and
search results selected by the user are not cached over time and
therefore, the cache cannot take advantage of the repeatability of
mobile queries. When only the personalization component of the
cache is used, the cache is initially empty and therefore cache hits
are achieved only from repeated queries.

As Figure 17 illustrates, when only the community part of the
cache is used, the average hit rate across all user classes is reduced
from 65% to 55%. What is even more interesting is the fact that
the hit rate seems to increase monotonically with the monthly
query volume. Even though the exact same cache is used across
all classes (since personalization is not used), the users that submit
more queries seem to also experience higher hit rates.

When only the personalization part of the cache is used, the
average hit rate across all user classes is reduced from 65% to
56.5%. Note that for every user class, the personalization part of
the cache achieves the same or higher hit rate compared to the
case where only the community part of the cache is used. This is
another indication of the high repeatability of mobile queries that
the personalization part of the cache is able to capture. In addition,
the fact that the cache hit rate increases for users with higher query
volumes due to the personalized component of the cache, shows

Figure 17. PocketSearch’s average cache hit rate.

that users with higher query volumes repeat the same queries more
often.

Even though users repeat mobile queries frequently, the com-
munity part of the cache is still very important for the overall user
experience. Figure 18 shows the average hit rate for the different
user classes during the first week (Figure 18(a)) and first two weeks
(Figure 18(b)) of the one-month long query streams. Note, that af-
ter the first week, the hit rate of the personalization component of
the cache remains lower than that of the community component of
the cache. In particular, the fewer queries a user submits, the more
time it takes the personalization component to warm up and be able
to take advantage of the repeated queries. However, even during the
first week, PocketSearch cache is able to provide the same hit rate
with the one achieved in Figure 18 after a month. The community
part of the cache provides a warm start for PocketSearch and the
best possible out of the box search user experience.

The breakdown of the queries that result into a cache hit can
be seen in Figure 19. On average and across all user classes, 59%
of the cache hits are navigational queries4 (e.g., facebook, youtube,
etc.) and the rest 41% are non-navigational queries that. The non-
navigational hit rates are significantly increased or even doubled
when compared to the medium volume class for both the high and
extreme volume classes. This trend indicates that higher volume
users tend to submit more diversified queries. However, even for
this type of users PocketSearch is able to achieve high hit rates
by taking advantage of the repeatability of mobile queries with its
personalization component.

6.2.2 Daily Cache Updates
To understand how changes on the set of popular queries and
search results on the server affect PocketSearch’s cache hit rate, we
repeated the same experiments while updating the PocketSearch
cache on a daily basis as described in Section 5.4. On average,
across all user classes PocketSearch achieves a cache hit rate of
66% when daily updates are used (we omit the graphs in the
interest of space). This incremental improvement of 1.5% (66% vs
65% hit rate when daily updates are not used) is due to the fact
that the popular set of queries and search results did not change
significantly over the one month period we examined.

7. Architectural Considerations
The design and implementation of PocketSearch highlights the
impact that the pocket cloudlet architecture can have on mobile user
experience. Using only a couple of hundreds of KB of DRAM and
a couple of MB of flash memory, PocketSearch can instantly serve
66% of the query volume that an average user submits. At the same
time, Pocketsearch prevents 66% of the query volume across all
users from hitting the cellular radio and the search engine servers,
mitigating pressure on both cellular links and datacenters.

4 these are queries that current browser cache substring matching techniques
could also serve.

(a) (b)

Figure 18. Average cache hit rate across the 4 user classes for (a) the first week and (b) the first two weeks of the month.

Figure 19. Breakdown of PocketSearch’s cache hits into naviga-
tional and non-navigational across the 4 user classes.

Even though PocketSearch focuses on search services, we be-
lieve that the proposed architecture can serve as a template ar-
chitecture for a broader family of cloudlets. Several other mobile
cloud services beyond web search could leverage the same pocket
cloudlet architecture, but each service eventually imposes its own
memory requirements that might be very different when compared
to PocketSearch. For instance, as the data in Table 2 shows, a map-
ping service cloudlet would require approximately 25 GB to cache
all the map tiles for the user’s state. Furthermore, creating a yellow
pages cloudlet requires storing information about 23 million busi-
nesses across the United States, which according to Table 2 corre-
sponds to approximately 100 GB. Similarly, web content, mobile
ads and other pocket cloudlets impose their own requirements.

Even though each pocket cloudlet might share the same archi-
tecture and design principles, when multiple cloudlets with differ-
ent requirements run on the same device, they naturally compete
for resources within themselves and with other user applications.
Managing the system resources properly across multiple cloudlets
poses several architectural challenges.

User versus pocket cloudlets:The operating system will need
to limit memory consumption such that enough memory is avail-
able to user data and applications. The more content cloudlets
cache, the larger their indexes become. These indexes are stored in
main memory and compete with regular user application memory
usage. Pushing the indexes (or part of them) into slow storage-class
memory would significantly affect cloudlet performance. We sug-
gest the adoption of an intermediate tier consisting of fast storage-
class memory, as described in Section 3, to address this problem.

Pocket cloudlet interactions: Many pocket cloudlet services
cache related data. For example, when the user performs a web
search, both search and ad cloudlets are invoked for the same query.
In addition, the results will point to related web content, map tiles
and yellow page entries. Different cloudlets have distinct storage
requirements, and their relative storage allocation should take this
into account. In addition, we believe that when memory needs to

be reclaimed and cache entries evicted, it should be done in a
coordinated fashion. If a particular query misses in the local search
cache, there is not much benefit in hitting the ad cache because the
latency bottleneck to service this query will be waking up the radio.
Cache eviction policies should be managed by the operating system
and coordinated such that closely related items are evicted together.

Security: Some cloudlets may include sensitive user and/or ap-
plication data in their caches. Consequently, other cloudlets should
not be allowed unrestricted access to those cache contents. For ex-
ample, a map cloudlet shouldn’t be allowed to access information
regarding a user’s recent bank transactions. We envision the oper-
ating system will provide such isolation and access control.

8. Related Work
The concept of caching information on client devices has been
applied in the past in the context of web content [24], [21], [23],
[25], [13] and advertisement [11] caching. The work presented in
this paper differs in three ways. First, we describe a generalized
mobile caching architecture that can be applied to various cloud
services. Second, PocketSearch is complimentary to these efforts,
in the sense that focuses on caching search results and not web
content. Third, conversely to the previous work, PocketSearch was
designed and implemented on an actual smartphone, addressing the
challenges of building such an architecture on a mobile device.

File server caching systems, such as Coda [2], have focused
on remote/offline access of files. Such schemes do not distinguish
between a search result and a standard webpage HTML file let
alone allow for personalized ranking of results within a page.
Since these systems have no notion of search results, they don’t
take into account search trends into designing optimal client-side
caching strategies. For instance, our data-driven approach indicated
that by storing individual search results, storage requirements can
be reduced by a factor of 8. In addition, PocketSearch combines
both personal and community access characteristics to decide what
search results to cache.

Approaches focusing on client side database caching have been
combined with web browser caches to locally serve dynamic pages
[1, 10]. Such approaches, however, aim to reproduce the exact same
dynamic page as the servers (e.g., search engines). They do not
focus on assessing the popularity and cacheability of individual
objects (e.g., search results) within the dynamic page (e.g., search
results page) let alone personalize their ranking.

Content delivery or distribution networks (CDNs), such as the
commercially available Akamai (www.akamai.com), aim to min-
imize user access time to content but they are complementary to
PocketSearch. CDNs have great impact on wired networks where
the latency between the client device and the nearby CDN node
is low. However, on mobile devices, the bottleneck is the wire-
less link. By properly combining Pocket Cloudlets and CDNs, dis-

tributed cloud services that provide instant user experience can be
created.

There have been several research efforts on understanding mo-
bile search behavior through search log analysis [4], [3], [15], [16],
[17], [18], [19], [30]. These efforts have analyzed search query vol-
umes that vary from hundreds of thousands to several tenths of
millions of queries. The search log analysis presented in this pa-
per differs in two fundamental ways. First, we analyze 200 million
mobile search queries, a query volume that is at least one order of
magnitude larger than the query volume used in any other mobile
search log study; volumes that large have been studied before only
for desktop search [26]. Second, besides reporting similar observa-
tions on the locality of queries across mobile users, we also study
in detail the repeatability of mobile queries for individual users.

The locality and repeatability of queries in the desktop search
domain has been studied extensively and used to propose a server-
side search caching scheme to reduce the load of search engines and
improve user response time [20], [29], [7]. In the mobile domain
though, the performance bottleneck is not the search engine but the
slow radio link. Conversely to these approaches, PocketSearch is a
client-based search cache that lives on the phone and enables search
results to be displayed instantaneously as the user enters a query.

Previous work has also used mobile search log analysis findings
to provide keyword auto-completion services on mobile devices
[18] and thus facilitate and speed up query string entry. Such ser-
vices are already popular on smartphone browsers and other mobile
search applications and are complementary to PocketSearch, which
focuses on providing fast search results and not query suggestions.

Recently, browsers and dedicated search applications on high-
end smartphones such as Android and iPhone, have enabled web
site suggestions as the user types a query. This is done in two ways.

First, for every new letter typed in the search box, a query is
submitted in the background to the server for the partially entered
query term and the most popular search result is returned as a
website suggestion to the user. Note, that in this case a regular
search query has to be submitted to the server over the radio link
and therefore the usual slow mobile search experience is taking
place.

Second, as the user types a query, a substring matching algo-
rithm between the partial query string and all the website addresses
in browser’s cache can instantly provide the most relevant website
that has been previously visited by the user. Unfortunately, this ap-
proach only works for a portion of the navigational queries.

9. Conclusions
In this paper, we proposed pocket cloudlets, an effective architec-
ture that leverages abundant NVM in mobile devices to signifi-
cantly improve user experience, both in terms of latency and bat-
tery life, by avoiding expensive radio wakeups and transmissions
to access cloud services. We presented a case study of a search
pocket cloudlet, and showed a surprising result: such service is vi-
able even in today’s mobile devices. We also explored other ser-
vices that could benefit from a pocket cloudlet architecture and
provided recommendations on how to build a system that supports
multiple pocket cloudlets.

References
[1] E. Benson, A. Marcus, D. Karger, and S. Madden. Sync Kit: a persis-

tent client-side database caching toolkit for data intensive websites. In
Proceedings of WWW, pages 121–130, 2010.

[2] P. J. Braam. The CODA distributed file system. Linux J., 1998, June
1998. ISSN 1075-3583.

[3] K. Church, B. Smyth, P. Cotter, and K. Bradley. Mobile information
access: A study of emerging search behavior on the mobile internet.
ACM Trans. Web, 1(1), 2007.

[4] K. Church, B. Smyth, K. Bradley, and P. Cotter. A large scale study of
european mobile search behaviour. In MobileHCI, 2008.

[5] S. R. et al. Phase-change random access memory: A scalable technol-
ogy. IBM Journal of Reseach and Development, 52(4/5), 2008.

[6] D. K. et all. A stackable cross point phase change memory. In 2009
International Electron Device Meeting, Dec 2009.

[7] T. Fagni, R. Perego, F. Silvestri, S. Orlando, U. Ca, and F. Venezia.
Boosting the performance of web search engines: Caching and
prefetching query results by exploiting historical usage data. ACM
Trans. Inf. Syst, 24, 2006.

[8] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, G. Ramesh,
and D. Estrin. Diversity in smartphone usage. In MobiSys, 2010.

[9] I. T. R. for Semiconductors Working Group. International technology
roadmap for semiconductors 2009 report. Technical report, Interna-
tional Technology Roadmap for Semiconductors, 2009.

[10] M. J. Franklin, M. J. Carey, and M. Livny. Local disk caching for
client-server database systems. In Proceedings of the 19th Interna-
tional Conference on Very Large Data Bases, VLDB ’93.

[11] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis. Serv-
ing ads from localhost for performance, privacy, and profit. In Hotnets,
2009.

[12] Y. Huai. Spin-transfer torque mram (stt-mram): challenges and
prospects. AAPPS Bulletin, 18(6):33–40, Dec 2008.

[13] S. Isaacman and M. Martonosi. The C-LINK system for collaborative
web usage: A real-world deployment in rural nicaragua. In NSDR ’09.

[14] R. C. Johnson. Memristors ready for prime time.
http://www.eetimes.com/electronics-news/4077811/Memristors-
ready-for-prime-time, Jul 2008.

[15] M. Kamvar and S. Baluja. A large scale study of wireless search
behavior: Google mobile search. In CHI, 2006.

[16] M. Kamvar and S. Baluja. Deciphering trends in mobile search.
Computer, 40(8):58–62, 2007.

[17] M. Kamvar and S. Baluja. The role of context in query input: using
contextual signals to complete queries on mobile devices. In Mobile-
HCI, 2007.

[18] M. Kamvar and S. Baluja. Query suggestions for mobile search:
understanding usage patterns. In CHI, 2008.

[19] M. Kamvar, M. Kellar, R. Patel, and Y. Xu. Computers and iphones
and mobile phones, oh my! In WWW, 2009.

[20] E. Markatos. On caching search engine query results. In Computer
Communications, 2000.

[21] E. P. Markatos and C. E. Chronaki. A top-10 approach to prefetching
on the web. In Proceedings of INET, 1998.

[22] Mobile Search Trends Report, http://
www.marketingcharts.com/interactive/
mobile-local-search-ad-revenues-to-reach-13b-by-2013-8092/.

[23] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data mining al-
gorithm for generalized web prefetching. IEEE Trans. on Knoweledge
and Data Engineering, 2003.

[24] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to
improve world wide web latency. SIGCOMM Comput. Commun. Rev.,
26(3), 1996.

[25] J. Pitkow and P. Pirolli. Mining longest repeating subsequences to
predict world wide web surfing. In USENIX, pages 139–150, 1999.

[26] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of
a very large web search engine query log. SIGIR Forum, 33(1), 1999.

[27] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via
automated analysis of interests and activities. In SIGIR, 2005.

[28] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information re-
retrieval: repeat queries in yahoo’s logs. In SIGIR, 2007.

[29] Y. Xie and D. O’Hallaron. Locality in search engine queries and its
implications for caching. In Infocom, 2002.

[30] J. Yi, F. Maghoul, and J. Pedersen. Deciphering mobile search pat-
terns: a study of yahoo! mobile search queries. In WWW, 2008.

